...
首页> 外文期刊>Physiological Reports >Excitation of skeletal muscle is a self‐limiting process, due to run‐down of Na+, K+ gradients, recoverable by stimulation of the Na+, K+ pumps
【24h】

Excitation of skeletal muscle is a self‐limiting process, due to run‐down of Na+, K+ gradients, recoverable by stimulation of the Na+, K+ pumps

机译:骨骼肌的兴奋是一个自限性过程,这是由于Na +,K +梯度下降所致,可以通过刺激Na +,K +泵来恢复

获取原文
   

获取外文期刊封面封底 >>

       

摘要

AbstractThe general working hypothesis of this study was that muscle fatigue and force recovery depend on passive and active fluxes of Na+ and K+. This is tested by examining the time-course of excitation-induced fluxes of Na+ and K+ during 5–300 sec of 10–60 Hz continuous electrical stimulation in rat extensor digitorum longus (EDL) muscles in vitro and in vivo using 22Na and flame photometric determination of Na+ and K+. 60 sec of 60 Hz stimulation rapidly increases 22Na influx, during the initial phase (0–15 sec) by 0.53 μmol(sec)−1(g wet wt.)−1, sixfold faster than in the later phase (15–60 sec). These values agree with flame photometric measurements of Na+ content. The progressive reduction in the rate of excitation-induced Na+ uptake is likely to reflect gradual loss of excitability due to accumulation of K+ in the extracellular space and t-tubules leading to depolarization. This is in keeping with the concomitant progressive loss of contractile force previously demonstrated. During electrical stimulation rat muscles rapidly reach high rates of active Na+, K+-transport (in EDL muscles a sevenfold increase and in soleus muscles a 22-fold increase), allowing efficient and selective compensation for the large excitation-induced passive Na+, K+-fluxes demonstrated over the latest decades. The excitation-induced changes in passive fluxes of Na+ and K+ are both clearly larger than previously observed. The excitation-induced reduction in [Na+]o contributes considerably to the inhibitory effect of elevated [K+]o. In conclusion, excitation-induced passive and active Na+ and K+ fluxes are important causes of muscle fatigue and force recovery, respectively.
机译:摘要这项研究的一般工作假设是,肌肉疲劳和力量恢复取决于Na + 和K + 的被动和主动通量。通过检查大鼠伸肌10-60 Hz连续电刺激5–300秒内Na + 和K + 的激发感应通量的时程来对此进行测试用 22 Na进行体外和体内指长肌(EDL)肌肉,并用火焰光度法测定Na + 和K + 。 60 Hz刺激中的60秒在初始阶段(0-15秒)迅速增加了 22 Na流入量,增加了0.53μmol(sec) -1 (g湿重)。 -1 ,比后期(15-60秒)快六倍。这些值与Na + 含量的火焰光度测量结果一致。兴奋诱导的Na + 摄取速率的逐渐降低可能反映出由于K + 在细胞外空间和t形小管中积累而引起的兴奋性逐渐降低去极化。这与先前证明的伴随的收缩力的逐渐损失是一致的。在电刺激过程中,大鼠肌肉迅速达到高活性Na + ,K + 转运的速率(在EDL肌肉中增加7倍,在比目鱼肌中增加22倍),可以对最近几十年来证明的大量激发诱导的被动Na + ,K + 通量进行有效和选择性的补偿。 Na + 和K + 的无源通量的激发引起的变化都明显大于以前观察到的。激发诱导的[Na + ] o 的减少对提高[K + ] o 。总之,激发引起的被动和主动Na + 和K + 通量分别是肌肉疲劳和力量恢复的重要原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号