首页> 美国卫生研究院文献>AMB Express >Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation
【2h】

Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation

机译:长期孵育后厌氧杆菌科和甲烷菌属成为烷烃依赖性产甲烷菌培养中的主要微生物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The methanogenic alkanes-degrading enrichment culture which had been incubated for over 1,300 days amended with n-alkanes (C15–C20) was investigated through clone libraries of bacteria, archaea and assA, mcrA functional genes. These enrichment cultures were obtained from oily sludge after an initial incubation of the oily sludge without any carbon source and then an enrichment transfer with n-alkanes (C15–C20) for acclimation. Activation of alkanes, methane precursor generation and methanogenic pathways are considered as three pivotal stages for the continuous methanogenesis from degradation of alkanes. The presence of functional genes encoding the alkylsuccinate synthase α-subunit indicated that fumarate addition is most likely the one of initial activation step for degradation of n-alkanes. Degradation intermediates of n-alkanes were octadecanoate, hexadecanoate, butyrate, isobutyrate, acetate and propionate, which could provide the appropriate substrates for acetate formation. Both methyl coenzyme M reductase gene and 16S rRNA gene analysis showed that microorganisms of Methanoseata were the most dominant methanogens, capable of using acetate as the electron donor to produce methane. Bacterial clone libraries showed organisms of Anaerolineaceae (within the phylum of Chloroflexi) were predominant (45.5%), indicating syntrophically cooperation with Methanosaeta archaea was likely involved in the process of methanogenic degradation of alkanes. Alkanes may initially be activated via fumarate addition and degraded to fatty acids, then converted to acetate, which was further converted to methane and carbon dioxide by methanogens.Electronic supplementary materialThe online version of this article (doi:10.1186/s13568-015-0117-4) contains supplementary material, which is available to authorized users.
机译:通过细菌,古细菌和assA,mcrA功能基因的克隆文库,研究了已被正构烷烃(C15–C20)修饰孵育了1300多天的产甲烷分解烷烃的富集培养物。这些富集培养物是从最初没有任何碳源的油性污泥孵育后,从油性污泥中获得的,然后通过正构烷烃(C15–C20)进行富集转移进行驯化。烷烃的活化,甲烷前体的产生和产甲烷的途径被认为是烷烃降解连续产甲烷的三个关键阶段。编码烷基琥珀酸合酶α-亚基的功能基因的存在表明,富马酸酯的添加很可能是正构烷烃降解的初始活化步骤之一。正构烷烃的降解中间体为十八烷酸酯,十六烷酸酯,丁酸酯,异丁酸酯,乙酸酯和丙酸酯,它们可以为乙酸酯的形成提供合适的底物。甲基辅酶M还原酶基因和16S rRNA基因分析均表明,甲烷菌属的微生物是最主要的产甲烷菌,能够使用乙酸盐作为电子供体来产生甲烷。细菌克隆文库显示,厌氧杆菌科(在叶绿藻门内)的生物占主导地位(45.5%),表明与古菌甲烷菌的同养合作可能参与了烷烃的甲烷化降解过程。烷烃可首先通过富马酸酯加成活化并降解为脂肪酸,然后转化为乙酸酯,然后再由产甲烷菌转化为甲烷和二氧化碳。电子补充材料本文的在线版本(doi:10.1186 / s13568-015-0117- 4)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号