首页> 美国卫生研究院文献>Nucleic Acids Research >MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads
【2h】

MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads

机译:MetaVelvet:Velvet汇编程序的扩展可从短序列读取中重新构建元基因组

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An important step in ‘metagenomics’ analysis is the assembly of multiple genomes from mixed sequence reads of multiple species in a microbial community. Most conventional pipelines use a single-genome assembler with carefully optimized parameters. A limitation of a single-genome assembler for de novo metagenome assembly is that sequences of highly abundant species are likely misidentified as repeats in a single genome, resulting in a number of small fragmented scaffolds. We extended a single-genome assembler for short reads, known as ‘Velvet’, to metagenome assembly, which we called ‘MetaVelvet’, for mixed short reads of multiple species. Our fundamental concept was to first decompose a de Bruijn graph constructed from mixed short reads into individual sub-graphs, and second, to build scaffolds based on each decomposed de Bruijn sub-graph as an isolate species genome. We made use of two features, the coverage (abundance) difference and graph connectivity, for the decomposition of the de Bruijn graph. For simulated datasets, MetaVelvet succeeded in generating significantly higher N50 scores than any single-genome assemblers. MetaVelvet also reconstructed relatively low-coverage genome sequences as scaffolds. On real datasets of human gut microbial read data, MetaVelvet produced longer scaffolds and increased the number of predicted genes.
机译:“基因组学”分析的重要一步是从微生物群落中多个物种的混合序列读取物中组装多个基因组。大多数常规管道使用具有仔细优化参数的单基因组组装器。从头基因组组装的单基因组组装器的局限性在于,高度丰富的物种的序列很可能被误识别为单个基因组中的重复序列,从而导致许多小的片段支架。我们将用于短读的单基因组汇编程序(称为“ Velvet”)扩展到了元基因组汇编(我们称为“ MetaVelvet”),用于多个物种的混合短读。我们的基本概念是,首先将由混合短读构成的de Bruijn图分解为单独的子图,其次,基于每个分解的de Bruijn子图构建一个支架作为分离物种基因组。我们利用两个功能(覆盖率(丰度)差异和图连接性)来分解de Bruijn图。对于模拟数据集,MetaVelvet成功地产生了比任何单基因组组装者更高的N50分数。 MetaVelvet还将覆盖率相对较低的基因组序列重建为支架。在人类肠道微生物读取数据的真实数据集上,MetaVelvet生产更长的支架并增加了预测基因的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号