首页> 美国卫生研究院文献>ChemistryOpen >Mechanistic Investigation into Olefin Epoxidation with H2O2 Catalyzed by Aqua‐Coordinated Sandwich‐Type Polyoxometalates: Role of the Noble Metal and Active Oxygen Position
【2h】

Mechanistic Investigation into Olefin Epoxidation with H2O2 Catalyzed by Aqua‐Coordinated Sandwich‐Type Polyoxometalates: Role of the Noble Metal and Active Oxygen Position

机译:水合三明治式多金属氧酸盐催化H2O2环氧环氧化的机理研究:贵金属和活性氧位置的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aqua‐coordinated sandwich‐type polyoxometalates (POMs), {[WZnTM2(H2O)2](ZnW9O34)2}n− (TM=RhIII, PdII, and PtII), catalyze olefin epoxidation with hydrogen peroxide and have been well established, and they present an advance toward the utilization of olefins. To elucidate the epoxidation mechanism, we systematically performed density functional calculations. The reaction proceeds through a two‐step mechanism: activation of H2O2 and oxygen transfer. The aqua‐coordinated complexes show two distinct H2O2 activation pathways: “two‐step” and “concerted”. The concerted processes are more facile and proceed with similar and rate‐determining energy barriers at the Rh‐, Pd‐, and Pt‐containing transition states, which agrees well with the experimental results. Next, the resulting TM−OH−(μ‐OOH) intermediate transfers an O atom to olefin to form an epoxide. The higher reactivity of the Rh‐containing POM is attributed to more interactions between the Rh and hydroperoxo unit. We also calculated all active oxygen positions to locate the most favorable pathway. The higher reactivity of the two‐metal‐bonded oxygen position is predominantly ascribed to its lower stereoscopic hindrance. Furthermore, the presence of one and two explicit water solvent molecules significantly reduces the energy barriers, making these sandwich POMs very efficient for the olefin epoxidation with H2O2.
机译:水配位的三明治型多金属氧酸盐(POMs),{[WZnTM2(H2O)2](ZnW9O34)2} n-(TM = Rh III ,Pd II 和Pt II )催化过氧化氢催化烯烃的环氧化反应,并得到了广泛的应用,它们在烯烃的利用方面取得了进展。为了阐明环氧化机理,我们系统地进行了密度泛函计算。该反应通过两步机制进行:活化H2O2和转移氧气。水配位复合物显示出两种不同的H2O2活化途径:“两步”和“一致”。协调一致的过程更加容易,并且在含Rh,Pd和Pt的过渡态上以相似且由速率确定的能垒进行,这与实验结果非常吻合。接下来,生成的TM-OH-(μ-OOH)中间体将O原子转移至烯烃以形成环氧化物。含Rh的POM的较高反应性归因于Rh与氢过氧单元之间的更多相互作用。我们还计算了所有活性氧的位置,以找到最有利的途径。两种金属键合的氧位置的较高反应性主要归因于其较低的立体障碍。此外,一种和两种显式水溶剂分子的存在显着降低了能垒,使这些夹心POM非常有效地用于烯烃与H2O2的环氧化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号