首页> 外文期刊>ChemistryOpen >Mechanistic Investigation into Olefin Epoxidation with H 2 O 2 Catalyzed by Aqua-Coordinated Sandwich-Type Polyoxometalates: Role of the Noble Metal and Active Oxygen Position
【24h】

Mechanistic Investigation into Olefin Epoxidation with H 2 O 2 Catalyzed by Aqua-Coordinated Sandwich-Type Polyoxometalates: Role of the Noble Metal and Active Oxygen Position

机译:Aqua配位的三明治型多金属氧酸盐催化H 2 O 2催化烯烃环氧化的机理:贵金属和活性氧位置的作用

获取原文
           

摘要

Abstract Aqua-coordinated sandwich-type polyoxometalates (POMs), {[WZnTM 2 (H 2 O) 2 ](ZnW 9 O 34 ) 2 } n ?¢???? (TM=Rh III , Pd II , and Pt II ), catalyze olefin epoxidation with hydrogen peroxide and have been well established, and they present an advance toward the utilization of olefins. To elucidate the epoxidation mechanism, we systematically performed density functional calculations. The reaction proceeds through a two-step mechanism: activation of H 2 O 2 and oxygen transfer. The aqua-coordinated complexes show two distinct H 2 O 2 activation pathways: ?¢????two-step?¢???? and ?¢????concerted?¢????. The concerted processes are more facile and proceed with similar and rate-determining energy barriers at the Rh-, Pd-, and Pt-containing transition states, which agrees well with the experimental results. Next, the resulting TM?¢????OH?¢????(????-OOH) intermediate transfers an O atom to olefin to form an epoxide. The higher reactivity of the Rh-containing POM is attributed to more interactions between the Rh and hydroperoxo unit. We also calculated all active oxygen positions to locate the most favorable pathway. The higher reactivity of the two-metal-bonded oxygen position is predominantly ascribed to its lower stereoscopic hindrance. Furthermore, the presence of one and two explicit water solvent molecules significantly reduces the energy barriers, making these sandwich POMs very efficient for the olefin epoxidation with H 2 O 2 .
机译:摘要水配位三明治型多金属氧酸盐(POMs),{[WZnTM 2(H 2 O)2](ZnW 9 O 34)2} n? (TM = Rh III,Pd II和Pt II),用过氧化氢催化烯烃环氧化,并且已经被很好地确立,并且它们在烯烃的利用方面呈现出进步。为了阐明环氧化机理,我们系统地进行了密度泛函计算。该反应通过两步机理进行:H 2 O 2活化和氧转移。水配位的配合物显示出两个不同的H 2 O 2活化途径:???两步?和?¢ ???? concerted?¢ ????。协同的过程更加容易,并且在含Rh,Pd和Pt的过渡态上以相似且决定速率的能垒进行,这与实验结果非常吻合。接着,所得的TM 2 = OH 2 =(OH -OH)中间体将O原子转移至烯烃以形成环氧化物。含Rh的POM的较高反应性归因于Rh与氢过氧单元之间的更多相互作用。我们还计算了所有活性氧的位置,以找到最有利的途径。两金属键合的氧位置的较高反应性主要归因于其较低的立体障碍。此外,一种和两种显式水溶剂分子的存在显着降低了能垒,使这些夹心POM非常有效地用于烯烃与H 2 O 2的环氧化。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号