首页> 美国卫生研究院文献>Journal of Applied Clinical Medical Physics >Tolerance levels of CT number to electron density table for photon beam in radiotherapy treatment planning system
【2h】

Tolerance levels of CT number to electron density table for photon beam in radiotherapy treatment planning system

机译:放射治疗计划系统中光子束CT数对电子密度表的容忍度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The accuracy of computed tomography number to electron density (CT‐ED) calibration is a key component for dose calculations in an inhomogeneous medium. In a previous work, it was shown that the tolerance levels of CT‐ED calibration became stricter with an increase in tissue thickness and decrease in the effective energy of a photon beam. For the last decade, a low effective energy photon beam (e.g., flattening‐filter‐free (FFF)) has been used in clinical sites. However, its tolerance level has not been established yet. We established a relative electron density (ED) tolerance level for each tissue type with an FFF beam. The tolerance levels were calculated using the tissue maximum ratio (TMR) and each corresponding maximum tissue thickness. To determine the relative ED tolerance level, TMR data from a Varian accelerator and the adult reference computational phantom data in the International Commission on Radiological Protection publication 110 (ICRP‐110 phantom) were used in this study. The 52 tissue components of the ICRP‐110 phantom were classified by mass density as five tissues groups including lung, adipose/muscle, cartilage/spongy‐bone, cortical bone, and tooth tissue. In addition, the relative ED tolerance level of each tissue group was calculated when the relative dose error to local dose reached 2%. The relative ED tolerances of a 6 MVFFF beam for lung, adipose/muscle, and cartilage/spongy‐bone were ±0.044, ±0.022, and ±0.044, respectively. The thicknesses of the cortical bone and tooth groups were too small to define the tolerance levels. Because the tolerance levels of CT‐ style="fixed-case">ED calibration are stricter with a decrease in the effective energy of the photon beam, the tolerance levels are determined by the lowest effective energy in useable beams for radiotherapy treatment planning systems.
机译:计算机断层扫描数对电子密度(CT-ED)校准的准确性是在非均匀介质中进行剂量计算的关键因素。在以前的工作中,研究表明,随着组织厚度的增加和光子束有效能量的降低,CT-ED校准的公差级别变得更加严格。在过去的十年中,临床场所使用了低有效能量的光子束(例如,无平坦过滤器(FFF))。但是,其公差等级尚未确定。我们使用FFF光束为每种组织类型建立了相对电子密度(ED)耐受水平。使用组织最大比率(TMR)和每个相应的最大组织厚度来计算耐受水平。为了确定相对的ED耐受水平,本研究使用了国际放射防护委员会第110号出版物(ICRP-110幻影)中来自瓦里安加速器的TMR数据和成人参考计算幻象数据。 ICRP-110幻象的52个组织组成按质量密度分为五个组织组,包括肺,脂肪/肌肉,软骨/脊椎,皮质骨和牙齿组织。另外,当相对于局部剂量的相对剂量误差达到2%时,计算每个组织组的相对ED耐受水平。 6 MVFFF光束对肺,脂肪/肌肉和软骨/脊椎骨的相对ED容差分别为±0.044,±0.022和±0.044。皮质骨和牙齿组的厚度太小,无法定义公差水平。由于CT‐ style =“ fixed-case”> ED 校准的公差级别随着光子束有效能量的降低而变得更严格,因此公差级别由可用光束中的最低有效能量确定用于放射治疗计划系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号