首页> 美国卫生研究院文献>Advanced Science >Morphology‐Controlled Aluminum‐Doped Zinc Oxide Nanofibers for Highly Sensitive NO2 Sensors with Full Recovery at Room Temperature
【2h】

Morphology‐Controlled Aluminum‐Doped Zinc Oxide Nanofibers for Highly Sensitive NO2 Sensors with Full Recovery at Room Temperature

机译:形态控制的铝掺杂氧化锌纳米纤维用于高灵敏度的NO2传感器室温下可完全回收

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Room‐temperature (RT) gas sensitivity of morphology‐controlled free‐standing hollow aluminum‐doped zinc oxide (AZO) nanofibers for NO2 gas sensors is presented. The free‐standing hollow nanofibers are fabricated using a polyvinylpyrrolidone fiber template electrospun on a copper electrode frame followed by radio‐frequency sputtering of an AZO thin overlayer and heat treatment at 400 °C to burn off the polymer template. The thickness of the AZO layer is controlled by the deposition time. The gas sensor based on the hollow nanofibers demonstrates fully recoverable n‐type RT sensing of low concentrations of NO2 (0.5 ppm). A gas sensor fabricated with Al2O3‐filled AZO nanofibers exhibits no gas sensitivity below 75 °C. The gas sensitivity of a sensor is determined by the density of molecules above the minimum energy for adsorption, collision frequency of gas molecules with the surface, and available adsorption sites. Based on finite‐difference time‐domain simulations, the RT sensitivity of hollow nanofiber sensors is ascribed to the ten times higher collision frequency of NO2 molecules confined inside the fiber compared to the outer surface, as well as twice the surface area of hollow nanofibers compared to the filled ones. This approach might lead to the realization of RT sensitive gas sensors with 1D nanostructures.
机译:提出了形态学控制的独立式中空铝掺杂氧化锌(AZO)纳米纤维对NO2气体传感器的室温(RT)气体敏感性。独立式中空纳米纤维是使用聚乙烯吡咯烷酮纤维模板电纺在铜电极框架上,然后对AZO薄覆盖层进行射频溅射,并在400°C进行热处理以烧掉聚合物模板而制成的。 AZO层的厚度由沉积时间控制。基于中空纳米纤维的气体传感器证明了低浓度NO2(0.5 ppm)的完全可恢复的n型RT感测。用填充有Al2O3的AZO纳米纤维制成的气体传感器在75°C以下显示不出气体敏感性。传感器的气体敏感性由高于最小吸附能量的分子密度,气体分子与表面的碰撞频率以及可用的吸附位点决定。基于时域有限差分模拟,中空纳米纤维传感器的RT灵敏度归因于与外表面相比,局限在纤维内部的NO2分子的碰撞频率高十倍,是中空纳米纤维表面积的两倍。到饱的这种方法可能导致具有一维纳米结构的RT敏感气体传感器的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号