首页> 美国卫生研究院文献>AMB Express >Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction
【2h】

Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction

机译:叶酸促进S-腺苷甲硫氨酸反应和微生物甲基化周期并促进反刍动物的产生和繁殖

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Folate has gained significant attention due to its vital role in biological methylation and epigenetic machinery. Folate, or vitamin (B9), is only produced through a de novo mechanism by plants and micro-organisms in the rumen of mature animals. Although limited research has been conducted on folate in ruminants, it has been noted that ruminal synthesis could not maintain folate levels in high yielding dairy animals. Folate has an essential role in one-carbon metabolism and is a strong antiproliferative agent. Folate increases DNA stability, being crucial for DNA synthesis and repair, the methylation cycle, and preventing oxidation of DNA by free radicals. Folate is also critical for cell division, metabolism of proteins, synthesis of purine and pyrimidine, and increasing the de novo delivery of methyl groups and S-adenosylmethionine. However, in ruminants, metabolism of B12 and B9 vitamins are closely connected and utilization of folate by cells is significantly affected by B12 vitamin concentration. Supplementation of folate through diet, particularly in early lactation, enhanced metabolic efficiency, lactational performance, and nutritional quality of milk. Impaired absorption, oxidative degradation, or deficient supply of folate in ruminants affects DNA stability, cell division, homocysteine remethylation to methionine, de novo synthesis of S-adenosylmethionine, and increases DNA hypomethylation, uracil misincorporation into DNA, chromosomal damage, abnormal cell growth, oxidative species, premature birth, low calf weight, placental tube defects, and decreases production and reproduction of ruminant animals. However, more studies are needed to overcome these problems and reduce enormous dietary supplement waste and impaired absorption of folate in ruminants. This review was aimed to highlight the vital role of folic acid in ruminants performance.
机译:叶酸由于其在生物甲基化和表观遗传机制中的重要作用而受到广泛关注。叶酸或维生素(B9)仅通过植物和微生物从头到尾的瘤胃中的新生机制产生。尽管对反刍动物中的叶酸进行了有限的研究,但已经注意到,瘤胃合成不能维持高产奶牛动物的叶酸水平。叶酸在单碳代谢中起着至关重要的作用,并且是一种强大的抗增殖剂。叶酸增加了DNA的稳定性,这对DNA的合成和修复,甲基化循环以及防止自由基氧化DNA至关重要。叶酸对于细胞分裂,蛋白质代谢,嘌呤和嘧啶的合成以及增加甲基和S-腺苷甲硫氨酸的从头递送也至关重要。但是,在反刍动物中,B12和B9维生素的代谢密切相关,并且细胞对叶酸的利用受到B12维生素浓度的显着影响。通过饮食补充叶酸,特别是在早期哺乳期,可提高牛奶的代谢效率,泌乳性能和营养品质。反刍动物中叶酸的吸收,氧化降解受损或供应不足会影响DNA稳定性,细胞分裂,高半胱氨酸再甲基化为蛋氨酸,从头合成S-腺苷甲硫氨酸,增加DNA甲基化不足,尿嘧啶误掺入DNA,染色体损伤,细胞异常生长,氧化性物质,早产,小腿重量轻,胎盘管缺陷,并降低反刍动物的生产和繁殖。但是,需要更多的研究来克服这些问题并减少大量的膳食补充剂浪费和反刍动物中叶酸的吸收受损。这篇综述旨在强调叶酸在反刍动物行为中的重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号