首页> 美国卫生研究院文献>Advanced Science >Co3O4 Supraparticle‐Based Bubble Nanofiber and Bubble Nanosheet with Remarkable Electrochemical Performance
【2h】

Co3O4 Supraparticle‐Based Bubble Nanofiber and Bubble Nanosheet with Remarkable Electrochemical Performance

机译:基于Co3O4超微粒的气泡纳米纤维和气泡纳米片具有出色的电化学性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hollow nanostructures based on transition metal oxides (TMOs) with high surface‐to‐volumetric ratio, low density, and high loading capacity have received great attention for energy‐related applications. However, the controllable fabrication of hybrid TMO‐based hollow nanostructures in a simple and scalable manner remains challenging. Herein, a simple and scalable strategy is used to prepare hierarchical carbon nanofiber (CNF)‐based bubble‐nanofiber‐structured and reduced graphene oxide (RGO)‐based bubble‐nanosheet‐structured Co3O4 hollow supraparticle (HSP) composites (denoted as CNF/HSP‐Co3O4 and RGO/HSP‐Co3O4, respectively) by solution self‐assembly of ultrasmall Co3O4 nanoparticles (NPs) assisting with polydopamine (PDA) modification. It is proved that the electrochemical performance of Co3O4 NPs can be greatly enhanced by the rationally designed nanostructure of bubble‐like supraparticles combined with carbon materials as excellent electrodes for supercapacitors. The favorable structure and composition endow the hybrid electrode with high specific capacitance (1435 F g−1/1360 F g−1 at 1 A g−1/5 mV s−1) as well as fantastic rate capability. The asymmetric supercapacitors achieve an excellent maximum energy density of 51 W h kg−1 and superb electrochemical stability (92.3% retention after 10 000 cycles). This work suggests that the rational design of electrode materials with bubble‐like superstructures provides an opportunity for achieving high‐performance electrode materials for advanced energy storage devices.
机译:具有高表面体积比,低密度和高负载能力的基于过渡金属氧化物(TMO)的中空纳米结构在与能源相关的应用中备受关注。但是,以简单且可扩展的方式可控地制造基于TMO的杂化纳米纳米结构仍然具有挑战性。本文采用一种简单且可扩展的策略来制备基于分层碳纳米纤维(CNF)的气泡-纳米纤维结构和基于还原氧化石墨烯(RGO)的气泡-纳米片结构的Co3O4中空超微粒(HSP)复合材料(表示为CNF / HSP-Co3O4和RGO / HSP-Co3O4分别通过超小型Co3O4纳米颗粒(NP)的溶液自组装和聚多巴胺(PDA)修饰而实现。事实证明,通过合理设计气泡状超微粒的纳米结构,结合碳材料作为超级电容器的优良电极,可以大大提高Co3O4 NPs的电化学性能。良好的结构和组成使得混合电极在1 A g -1 -1 / 1360 F g -1 sup> / 5 mV s -1 )以及出色的速率功能。非对称超级电容器具有出色的51 W h kg -1 的最大能量密度和出色的电化学稳定性(10000次循环后保留率达92.3%)。这项工作表明,具有气泡状上部结构的电极材料的合理设计为实现用于高级能量存储设备的高性能电极材料提供了机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号