首页> 美国卫生研究院文献>Journal of Neurophysiology >Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses
【2h】

Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses

机译:电场脉冲直接激活Mauthner细胞从而驱动超快速逃逸反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rapid escape swims in fish are initiated by the Mauthner cells, giant reticulospinal neurons with unique specializations for swift responses. The Mauthner cells directly activate motoneurons and facilitate predator detection by integrating acoustic, mechanosensory, and visual stimuli. In addition, larval fish show well-coordinated escape responses when exposed to electric field pulses (EFPs). Sensitization of the Mauthner cell by genetic overexpression of the voltage-gated sodium channel SCN5 increased EFP responsiveness, whereas Mauthner ablation with an engineered variant of nitroreductase with increased activity (epNTR) eliminated the response. The reaction time to EFPs is extremely short, with many responses initiated within 2 ms of the EFP. Large neurons, such as Mauthner cells, show heightened sensitivity to extracellular voltage gradients. We therefore tested whether the rapid response to EFPs was due to direct activation of the Mauthner cells, bypassing delays imposed by stimulus detection and transmission by sensory cells. Consistent with this, calcium imaging indicated that EFPs robustly activated the Mauthner cell but only rarely fired other reticulospinal neurons. Further supporting this idea, pharmacological blockade of synaptic transmission in zebrafish did not affect Mauthner cell activity in response to EFPs. Moreover, Mauthner cells transgenically expressing a tetrodotoxin (TTX)-resistant voltage-gated sodium channel retained responses to EFPs despite TTX suppression of action potentials in the rest of the brain. We propose that EFPs directly activate Mauthner cells because of their large size, thereby driving ultrarapid escape responses in fish.
机译:鱼的快速逃逸游泳是由Mauthner细胞发起的,Mauthner细胞是巨大的网状棘突神经元,具有快速反应的独特专长。 Mauthner细胞通过整合声音,机械感官和视觉刺激来直接激活运动神经元并促进捕食者的发现。此外,幼鱼在暴露于电场脉冲(EFP)时显示出协调良好的逃避响应。电压门控钠通道SCN5的基因过表达使Mauthner细胞敏感,从而增加了EFP反应性,而具有增强活性(epNTR)的硝基还原酶工程变体的Mauthner消融消除了反应。对EFP的反应时间非常短,许多响应在EFP的2毫秒内启动。大型神经元(例如Mauthner细胞)对细胞外电压梯度显示出更高的敏感性。因此,我们测试了对EFP的快速响应是否归因于Mauthner细胞的直接激活,绕过了刺激检测和感官细胞传播所施加的延迟。与此相符的是,钙成像表明EFP能够强烈激活Mauthner细胞,但很少激发其他网状脊髓神经元。进一步支持该观点,斑马鱼中突触传递的药理学阻断并不影响响应EFP的Mauthner细胞活性。此外,尽管TTX抑制了大脑其他部位的动作电位,但转基因表达抗河豚毒素(TTX)的电压门控钠通道的Mauthner细胞仍保留了对EFP的反应。我们建议EFP由于其体积大而直接激活Mauthner细胞,从而驱动鱼的超快速逃逸反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号