首页> 美国卫生研究院文献>Optics Express >Plasma nanotexturing of silicon surfaces for photovoltaics applications: influence of initial surface finish on the evolution of topographical and optical properties
【2h】

Plasma nanotexturing of silicon surfaces for photovoltaics applications: influence of initial surface finish on the evolution of topographical and optical properties

机译:用于光伏应用的硅表面的等离子体纳米纹理化:初始表面光洁度对形貌和光学性质演变的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Using a plasma to generate a surface texture with feature sizes on the order of tens to hundreds of nanometers (“nanotexturing”) is a promising technique being considered to improve efficiency in thin, high-efficiency crystalline silicon solar cells. This study investigates the evolution of the optical properties of silicon samples with various initial surface finishes (from mirror polish to various states of micron-scale roughness) during a plasma nanotexturing process. It is shown that during said process, the appearance and growth of nanocone-like structures are essentially independent of the initial surface finish, as quantified by the auto-correlation function of the surface morphology. During the first stage of the process (2 min to 15 min etching), the reflectance and light-trapping abilities of the nanotextured surfaces are strongly influenced by the initial surface roughness; however, the differences tend to diminish as the nanostructures become larger. For the longest etching times (15 min or more), the effective reflectance is less than 5 % and a strong anisotropic scattering behavior is also observed for all samples, leading to very elevated levels of light-trapping.
机译:使用等离子体产生具有数十至数百纳米量级的特征尺寸的表面纹理(“纳米纹理”)是一种有前途的技术,被认为可以提高薄的,高效的晶体硅太阳能电池的效率。这项研究调查了在等离子体纳米纹理化过程中具有各种初始表面光洁度(从镜面抛光到微米级粗糙度的各种状态)的硅样品的光学特性的演变。结果表明,在所述过程中,如通过表面形态的自相关函数所量化的,纳米锥状结构的出现和生长基本上与初始表面光洁度无关。在该过程的第一阶段(蚀刻2分钟至15分钟)中,纳米纹理化表面的反射率和光捕获能力受初始表面粗糙度的强烈影响;然而,随着纳米结构变大,差异趋于减小。对于最长的蚀刻时间(15分钟或更长),有效反射率小于5%,并且所有样品均观察到强烈的各向异性散射行为,从而导致非常高的光陷阱水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号