首页> 美国卫生研究院文献>Scientific Reports >Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale
【2h】

Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale

机译:高CO 2对珊瑚藻海藻碎石的地球化学的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Coralline algae are a significant component of the benthic ecosystem. Their ability to withstand physical stresses in high energy environments relies on their skeletal structure which is composed of high Mg-calcite. High Mg-calcite is, however, the most soluble form of calcium carbonate and therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of anthropogenic CO2 by the ocean. We examine the geochemistry of the cold water coralline alga Lithothamnion glaciale grown under predicted future (year 2050) high pCO2 (589 μatm) using Electron microprobe and NanoSIMS analysis. In the natural and control material, higher Mg calcite forms clear concentric bands around the algal cells. As expected, summer growth has a higher Mg content compared to the winter growth. In contrast, under elevated CO2 no banding of Mg is recognisable and overall Mg concentrations are lower. This reduction in Mg in the carbonate undermines the accuracy of the Mg/Ca ratio as proxy for past temperatures in time intervals with significantly different carbonate chemistry. Fundamentally, the loss of Mg in the calcite may reduce elasticity thereby changing the structural properties, which may affect the ability of L. glaciale to efficiently function as a habitat former in the future ocean.
机译:珊瑚藻是底栖生态系统的重要组成部分。它们在高能环境中承受物理压力的能力取决于其骨架结构,该骨架结构由高镁方解石组成。然而,高镁方解石是碳酸钙的最易溶形式,因此可能易受海洋吸收人为二氧化碳所引起的碳酸盐化学变化的影响。我们使用电子探针和NanoSIMS分析方法研究了在预测的未来(2050年)高pCO2(589μatm)高的条件下生长的冷水珊瑚藻藻石藻冰川的地球化学特征。在天然和对照材料中,较高镁的方解石在藻细胞周围形成清晰的同心带。不出所料,夏季生长的镁含量高于冬季生长的镁含量。相反,在较高的CO2浓度下,无法识别到Mg带,并且总Mg浓度较低。碳酸盐中Mg的这种降低会破坏Mg / Ca比值的准确性,因为Mg / Ca比值在时间间隔内具有明显不同的碳酸盐化学成分,可以替代过去的温度。从根本上讲,方解石中镁的损失可能会降低弹性,从而改变结构特性,这可能会影响冰川乳杆菌有效地充当未来海洋中的栖息地的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号