首页> 美国卫生研究院文献>Scientific Reports >Tunable short-wavelength spin wave excitation from pinned magnetic domain walls
【2h】

Tunable short-wavelength spin wave excitation from pinned magnetic domain walls

机译:固定磁畴壁可调谐的短波长自旋波激发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Miniaturization of magnonic devices for wave-like computing requires emission of short-wavelength spin waves, a key feature that cannot be achieved with microwave antennas. In this paper, we propose a tunable source of short-wavelength spin waves based on highly localized and strongly pinned magnetic domain walls in ferroelectric-ferromagnetic bilayers. When driven into oscillation by a microwave spin-polarized current, the magnetic domain walls emit spin waves with the same frequency as the excitation current. The amplitude of the emitted spin waves and the range of attainable excitation frequencies depend on the availability of domain wall resonance modes. In this respect, pinned domain walls in magnetic nanowires are particularly attractive. In this geometry, spin wave confinement perpendicular to the nanowire axis produces a multitude of domain wall resonances enabling efficient spin wave emission at frequencies up to 100 GHz and wavelengths down to 20 nm. At high frequency, the emission of spin waves in magnetic nanowires becomes monochromatic. Moreover, pinning of magnetic domain wall oscillators onto the same ferroelectric domain boundary in parallel nanowires guarantees good coherency between spin wave sources, which opens perspectives towards the realization of Mach-Zehnder type logic devices and sensors.
机译:用于波状计算的大型电子设备的小型化需要发射短波长自旋波,这是微波天线无法实现的关键特征。在本文中,我们基于铁电-铁磁双层中的高度局部化和强固定的磁畴壁,提出了一种短波长自旋波的可调源。当被微波自旋极化电流驱动而振荡时,磁畴壁会发射出与激发电流具有相同频率的自旋波。发射的自旋波的幅度和可获得的激发频率的范围取决于畴壁共振模式的可用性。在这方面,磁性纳米线中的钉扎畴壁是特别有吸引力的。在这种几何形状中,垂直于纳米线轴的自旋波限制会产生大量的畴壁共振,从而能够在高达100 GHz的频率和低至20 nm的波长下有效地发射自旋波。在高频下,磁性纳米线中的自旋波的发射变为单色。此外,将磁畴壁振荡器固定在平行纳米线上的相同铁电畴边界上可确保自旋波源之间的良好相干性,这为实现Mach-Zehnder型逻辑器件和传感器开辟了前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号