首页> 美国卫生研究院文献>Scientific Reports >Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering
【2h】

Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering

机译:偏压辅助溅射在MgO单晶上异质外延生长Pt和Au薄膜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The crystallographic orientation of a metal affects its surface energy and structure, and has profound implications for surface chemical reactions and interface engineering, which are important in areas ranging from optoelectronic device fabrication to catalysis. However, it can be very difficult and expensive to manufacture, orient, and cut single crystal metals along different crystallographic orientations, especially in the case of precious metals. One approach is to grow thin metal films epitaxially on dielectric substrates. In this work, we report on growth of Pt and Au films on MgO single crystal substrates of (100) and (110) surface orientation for use as epitaxial templates for thin film photovoltaic devices. We develop bias-assisted sputtering for deposition of oriented Pt and Au films with sub-nanometer roughness. We show that biasing the substrate decreases the substrate temperature necessary to achieve epitaxial orientation, with temperature reduction from 600 to 350 °C for Au, and from 750 to 550 °C for Pt, without use of transition metal seed layers. In addition, this temperature can be further reduced by reducing the growth rate. Biased deposition with varying substrate bias power and working pressure also enables control of the film morphology and surface roughness.
机译:金属的晶体学取向会影响其表面能和结构,并对表面化学反应和界面工程具有深远的影响,这在从光电器件制造到催化的各个领域都很重要。然而,沿着不同的晶体学取向制造,取向和切割单晶金属可能非常困难且昂贵,特别是在贵金属的情况下。一种方法是在介电基片上外延生长金属薄膜。在这项工作中,我们报道了在(100)和(110)表面取向的MgO单晶衬底上用作薄膜光伏器件的外延模板的Pt和Au膜的生长。我们开发了偏置辅助溅射技术,用于沉积具有亚纳米粗糙度的定向Pt和Au膜。我们表明,对基板施加偏压会降低实现外延取向所需的基板温度,其中Au的温度从600降低至350 C,Pt的温度降低至750至550℃,而无需使用过渡金属籽晶层。另外,可以通过降低生长速率来进一步降低该温度。具有不同的衬底偏置功率和工作压力的偏压沉积还可以控制膜的形态和表面粗糙度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号