首页> 美国卫生研究院文献>Scientific Reports >Exciton Recombination Energy- and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators
【2h】

Exciton Recombination Energy- and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators

机译:银等离子体谐振器上单层和多层量子点薄膜中的激子复合能量和电荷转移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling.
机译:我们使用光致发光(PL)和激发光谱以及动力学建模和仿真研究了银等离子体激元谐振器上多层CdS / ZnS量子点(QD)中的激子复合,能量和电荷转移。包括所有过程在内的激子动力学受到QD与银谐振器之间的距离,激发波长和QD膜厚的强烈影响。对于直接接触或非常小的距离,界面电荷转移和隧穿在固有辐射复合和激子能量转移到表面等离子体激元(SP)方面占主导地位,从而导致PL抑制。但是,随着距离的增加,隧穿急剧减少,而长距离激子-SP耦合的发生速度(>6.5μns)比固有复合(〜200μns)要快得多,从而显着提高了PL。激子-SP的耦合强度显示出对激发波长的强烈依赖性,表明激子的状态特定动力学和所涉及的表面等离激元的下转换。 QD多层的叠加层和底部单层主要通过长程激子-SP耦合表现出显着的PL增强。通过光物理动力学模型和模拟定量描述了银谐振器上单层和多层QD薄膜的总体发射行为。当前的实验和仿真结果为使用激子-表面等离子体激元耦合的基于QD的光收集应用提供了重要而有用的设计规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号