首页> 美国卫生研究院文献>Scientific Reports >Probing the Hydrogen Enhanced Near-Field Emission of ITO without a Vacuum-Gap
【2h】

Probing the Hydrogen Enhanced Near-Field Emission of ITO without a Vacuum-Gap

机译:在没有真空间隙的情况下探查ITO的氢增强近场发射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electromagnetic fields produced by thermal fluctuation can excite the near-field optical states, creating the potential for thermal radiation orders of magnitude greater than what is predicted by Plank’s blackbody theory. The typical schemes employed to probe the trapped electromagnetic energy of the near-field are with considerable technical challenges, suffering from scalability and high costs, hindering widespread use. A waveguide-based scheme relying on photon tunneling is presented as an alternate approach, as waveguides inherently provide a large density of channels for photons to tunnel to with the required k-vector matching and probability density overlap. The conducted experiments with a 10 nm indium tin oxide film, having plasmonic resonance in the 1500 nm wavelength range, show that the near-field EM radiation can be extracted to the far-field by establishing the mode of de-excitation to be that of photon tunneling to a nearby waveguide. Furthermore, it is also demonstrated that the thermally emitted energy is very sensitive to changes in the surface free electron density, a property that is unique to the near-field. In addition to the ease of implementation and scalability, the proposed waveguide-based extraction method does not require a vacuum-gap, which is a significant reduction in the required complexity.
机译:由热波动产生的电磁场可以激发近场光学状态,从而产生比普拉克黑体理论预测的数量级大的热辐射潜能。用于探测近场陷获的电磁能的典型方案面临着相当大的技术挑战,具有可扩展性和高成本,阻碍了其广泛使用。作为一种替代方法,提出了一种基于光子隧穿的基于波导的方案,因为波导固有地为光子隧穿提供了大密度的通道,从而具有所需的k矢量匹配和概率密度重叠。用在1500 innm波长范围内发生等离子共振的10 nm铟锡氧化物薄膜进行的实验表明,通过建立消磁模式为近场EM可以将近场EM辐射提取到远场。光子隧穿到附近的波导。此外,还证明了热发射能量对表面自由电子密度的变化非常敏感,这是近场所特有的。除了易于实现和可扩展性之外,所提出的基于波导的提取方法不需要真空间隙,这大大降低了所需的复杂性。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号