首页> 美国卫生研究院文献>Scientific Reports >Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids
【2h】

Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids

机译:钙介导的纳米材料在储层流体中的黏附

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Globally, a small percentage of oil is recovered from reservoirs using primary and secondary recovery mechanisms, and thus a major focus of the oil industry is toward developing new technologies to increase recovery. Many new technologies utilize surfactants, macromolecules, and even nanoparticles, which are difficult to deploy in harsh reservoir conditions and where failures cause material aggregation and sticking to rock surfaces. To combat these issues, typically material properties are adjusted, but recent studies show that adjusting the dispersing fluid chemistry could have significant impact on material survivability. Herein, the effect of injection fluid salinity and composition on nanomaterial fate is explored using atomic force microscopy (AFM). The results show that the calcium content in reservoir fluids affects the interactions of an AFM tip with a calcite surface, as surrogates for nanomaterials interacting with carbonate reservoir rock. The extreme force sensitivity of AFM provides the ability to elucidate small differences in adhesion at the pico-Newton (pN) level and provides direct information about material survivability. Increasing the calcium content mitigates adhesion at the pN-scale, a possible means to increase nanomaterial survivability in oil reservoirs or to control nanomaterial fate in other aqueous environments.
机译:在全球范围内,使用一级和二级回收机制从油藏中回收一小部分石油,因此,石油工业的主要重点是开发新技术以增加回收率。许多新技术都利用了表面活性剂,大分子甚至纳米颗粒,这些表面活性剂,大分子甚至纳米颗粒很难在恶劣的储层条件下使用,而在失败的情况下,这些故障会导致材料聚集并粘在岩石表面。为了解决这些问题,通常会调整材料的性能,但最近的研究表明,调整分散液的化学性质可能会对材料的生存能力产生重大影响。本文中,使用原子力显微镜(AFM)探索了注入液盐度和组成对纳米材料命运的影响。结果表明,作为纳米材料与碳酸盐储集岩相互作用的替代物,储层流体中的钙含量会影响AFM尖端与方解石表面的相互作用。原子力显微镜的极限力敏度提供了在皮牛顿(pN)级别阐明粘附力细微差别的能力,并提供了有关材料生存能力的直接信息。钙含量的增加会降低pN级的附着力,这是增加油层中纳米材料生存能力或控制其他水性环境中纳米材料命运的可能手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号