首页> 美国卫生研究院文献>Scientific Reports >First experimental observations on melting and chemical modification of volcanic ash during lightning interaction
【2h】

First experimental observations on melting and chemical modification of volcanic ash during lightning interaction

机译:闪电相互作用过程中火山灰熔化和化学改性的初步实验观察

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.
机译:火山灰羽流中的电气化通常会导致闪电协同放电。雷电等离子体通道内和周围的高温可能会化学改变,重新融化,并可能使喷发云中的灰烬碎片挥发。在这项研究中,我们在实验室中通过实验模拟了火山闪电的温度条件,并系统地研究了快速熔化对灰分的形态和化学成分的影响。将不同大小和成分的样品射向人工产生的电弧。实验后的灰分形态包括完全熔化的球体,部分熔化的颗粒,团聚体和囊状颗粒。高速成像揭示了在短暂的闪电与灰烬相互作用期间发生的各种过程,例如颗粒融化和变圆,起泡和爆炸性颗粒破碎。闪熔粒子的化学分析表明,通过热蒸发会大量损失Cl,S,P和Na。元素分布模式表明对流是元素从熔滴内部向挥发物损失的边缘传输的关键过程。对钠损失的程度进行建模可提供3290至3490 K的最高熔体温度,我们的结果表明,自然采光可能是火山灰形态和化学处理协同作用的重要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号