首页> 美国卫生研究院文献>Scientific Reports >Supraphysiological Levels of Oxygen Exposure During the Neonatal Period Impairs Signaling Pathways Required for Learning and Memory
【2h】

Supraphysiological Levels of Oxygen Exposure During the Neonatal Period Impairs Signaling Pathways Required for Learning and Memory

机译:新生儿时期的超生理水平的氧气暴露损害了学习和记忆所需的信号通路

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Preterm infants often require prolonged oxygen supplementation and are at high risk of neurodevelopmental impairment. We recently reported that adult mice exposed to neonatal hyperoxia (postnatal day [P] 2 to 14) had spatial navigation memory deficits associated with hippocampal shrinkage. The mechanisms by which early oxidative stress impair neurodevelopment are not known. Our objective was to identify early hyperoxia-induced alterations in hippocampal receptors and signaling pathways necessary for memory formation. We evaluated C57BL/6 mouse pups at P14, exposed to either 85% oxygen or air from P2 to 14. We performed targeted analysis of hippocampal ligand-gated ion channels and proteins necessary for memory formation, and global bioinformatic analysis of differentially expressed hippocampal genes and proteins. Hyperoxia decreased hippocampal mGLU7, TrkB, AKT, ERK2, mTORC1, RPS6, and EIF4E and increased α3, α5, and ɤ2 subunits of GABAA receptor and PTEN proteins, although changes in gene expression were not always concordant. Bioinformatic analysis indicated dysfunction in mitochondria and global protein synthesis and translational processes. In conclusion, supraphysiological oxygen exposure reduced proteins necessary for hippocampus-dependent memory formation and may adversely impact hippocampal mitochondrial function and global protein synthesis. These early hippocampal changes may account for memory deficits seen in preterm survivors following prolonged oxygen supplementation.
机译:早产儿通常需要长时间补充氧气,并且神经发育受损的风险很高。我们最近报道,成年小鼠暴露于新生儿高氧血症(出生后第[P] 2至14天)具有与海马萎缩相关的空间导航记忆缺陷。早期氧化应激损害神经发育的机制尚不清楚。我们的目标是确定早期高氧诱导的海马受体改变和记忆形成所必需的信号通路。我们评估了在P14暴露于85%的氧气或空气中(从P2到14)的C57BL / 6小鼠幼崽。我们进行了海马配体门控离子通道和记忆形成所必需的蛋白质的靶向分析,以及差异表达的海马基因的整体生物信息学分析和蛋白质。高氧血症可降低海马mGLU7,TrkB,AKT,ERK2,mTORC1,RPS6和EIF4E的表达,并增加GABAA受体和PTEN蛋白的α3,α5和ɤ2亚基,尽管基因表达的变化并不总是一致的。生物信息学分析表明线粒体功能障碍以及整体蛋白质合成和翻译过程。总之,超生理学的氧气暴露减少了海马依赖性记忆形成所必需的蛋白质,并且可能对海马线粒体功能和整体蛋白质合成产生不利影响。这些早期的海马改变可能是长期补氧后早产幸存者中记忆力减退的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号