首页> 美国卫生研究院文献>Scientific Reports >Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy
【2h】

Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy

机译:用光电流谱法探测悬浮二维半导体中的激子态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The optical response of semiconducting monolayer transition-metal dichalcogenides (TMDCs) is dominated by strongly bound excitons that are stable even at room temperature. However, substrate-related effects such as screening and disorder in currently available specimens mask many anticipated physical phenomena and limit device applications of TMDCs. Here, we demonstrate that that these undesirable effects are strongly suppressed in suspended devices. Extremely robust (photogain > 1,000) and fast (response time < 1 ms) photoresponse allow us to study, for the first time, the formation, binding energies, and dissociation mechanisms of excitons in TMDCs through photocurrent spectroscopy. By analyzing the spectral positions of peaks in the photocurrent and by comparing them with first-principles calculations, we obtain binding energies, band gaps and spin-orbit splitting in monolayer TMDCs. For monolayer MoS2, in particular, we obtain an extremely large binding energy for band-edge excitons, Ebind ≥ 570 meV. Along with band-edge excitons, we observe excitons associated with a van Hove singularity of rather unique nature. The analysis of the source-drain voltage dependence of photocurrent spectra reveals exciton dissociation and photoconversion mechanisms in TMDCs.
机译:半导体单层过渡金属二硫属化合物(TMDC)的光学响应主要由即使在室温下也稳定的强结合激子所控制。但是,与基质相关的效应(例如当前可用标本中的筛选和异常)掩盖了许多预期的物理现象,并限制了TMDC的设备应用。在这里,我们证明了这些不良影响在悬挂设备中得到了强烈抑制。极其强大的(光增益> 1,000)和快速的(响应时间<1µms)光响应使我们首次能够通过光电流光谱学研究TMDC中激子的形成,结合能和解离机理。通过分析光电流中峰的光谱位置,并将其与第一性原理进行比较,我们获得了单层TMDC中的结合能,能带隙和自旋轨道分裂。特别是对于单层MoS2,我们获得了带边缘激子的极大结合能,Ebind≥570 meV。与带边缘激子一起,我们观察到与范霍夫奇异性相关的激子,后者具有非常独特的性质。对光电流谱的源-漏电压依赖性的分析揭示了TMDC中的激子离解和光转换机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号