首页> 美国卫生研究院文献>Scientific Reports >Sphingosine 1-phosphate lyase ablation disrupts presynaptic architecture and function via an ubiquitin- proteasome mediated mechanism
【2h】

Sphingosine 1-phosphate lyase ablation disrupts presynaptic architecture and function via an ubiquitin- proteasome mediated mechanism

机译:鞘氨醇1-磷酸裂解酶的消融通过泛素-蛋白酶体介导的机制破坏突触前的结构和功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The bioactive lipid sphingosine 1-phosphate (S1P) is a degradation product of sphingolipids that are particularly abundant in neurons. We have shown previously that neuronal S1P accumulation is toxic leading to ER-stress and an increase in intracellular calcium. To clarify the neuronal function of S1P, we generated brain-specific knockout mouse models in which S1P-lyase (SPL), the enzyme responsible for irreversible S1P cleavage was inactivated. Constitutive ablation of SPL in the brain (SPLfl/fl/Nes) but not postnatal neuronal forebrain-restricted SPL deletion (SPLfl/fl/CaMK) caused marked accumulation of S1P. Hence, altered presynaptic architecture including a significant decrease in number and density of synaptic vesicles, decreased expression of several presynaptic proteins, and impaired synaptic short term plasticity were observed in hippocampal neurons from SPLfl/fl/Nes mice. Accordingly, these mice displayed cognitive deficits. At the molecular level, an activation of the ubiquitin-proteasome system (UPS) was detected which resulted in a decreased expression of the deubiquitinating enzyme USP14 and several presynaptic proteins. Upon inhibition of proteasomal activity, USP14 levels, expression of presynaptic proteins and synaptic function were restored. These findings identify S1P metabolism as a novel player in modulating synaptic architecture and plasticity.
机译:生物活性脂质鞘氨醇1-磷酸酯(S1P)是鞘脂的降解产物,在神经元中含量特别丰富。以前我们已经表明,神经元S1P积累是有毒的,导致内质网应激和细胞内钙的增加。为了阐明S1P的神经元功能,我们生成了脑特异性敲除小鼠模型,在该模型中,负责S1P不可逆切割的酶S1P-裂解酶(SPL)被灭活。大脑中SPL的本构切除(SPL fl / fl / Nes )而非产后神经元前脑限制性SPL缺失(SPL fl / fl / CaMK )引起明显的积累S1P。因此,在SPL fl / fl / Nes 小鼠的海马神经元中观察到突触前结构改变,包括突触小泡数量和密度显着减少,几种突触前蛋白表达降低以及突触短期可塑性受损。 。因此,这些小鼠表现出认知缺陷。在分子水平上,检测到了泛素-蛋白酶体系统(UPS)的激活,这导致了去泛素化酶USP14和几种突触前蛋白的表达降低。抑制蛋白酶体活性后,USP14水平,突触前蛋白的表达和突触功能得以恢复。这些发现表明,S1P代谢是调节突触结构和可塑性的新型参与者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号