首页> 美国卫生研究院文献>Scientific Reports >Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures
【2h】

Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures

机译:在封闭的纳米结构中使用可定制的Fano共振的高灵敏度铝基生物传感器。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Metallic nanostructure-based surface plasmon sensors are capable of real-time, label-free, and multiplexed detections for chemical and biomedical applications. Recently, the studies of aluminum-based biosensors have attracted a large attention because aluminum is a more cost-effective metal and relatively stable. However, the intrinsic properties of aluminum, having a large imaginary part of the dielectric function and a longer evanescent length, limit its sensing capability. Here we show that capped aluminum nanoslits fabricated on plastic films using hot embossing lithography can provide tailorable Fano resonances. Changing height of nanostructures and deposited metal film thickness modulated the transmission spectrum, which varied from Wood’s anomaly-dominant resonance, asymmetric Fano profile to surface plasmon-dominant resonance. For biolayer detections, the maximum surface sensitivity occurred at the dip of asymmetric Fano profile. The optimal Fano factor was close to −1.3. The wavelength and intensity sensitivities for surface thickness were up to 2.58 nmm and 90%m, respectively. The limit of detection (LOD) of thickness reached 0.018 nm. We attributed the enhanced surface sensitivity for capped aluminum nanoslits to a reduced evanescent length and sharp slope of the asymmetric Fano profile. The protein-protein interaction experiments verified the high sensitivity of capped nanostructures. The LOD was down to 236 fg/mL.
机译:基于金属纳米结构的表面等离激元传感器能够对化学和生物医学应用进行实时,无标记和多重检测。近年来,基于铝的生物传感器的研究引起了广泛的关注,因为铝是更具成本效益的金属并且相对稳定。但是,铝的固有特性具有较大的介电虚构部分和较长的消逝长度,因而限制了其感应能力。在这里,我们显示了使用热压印光刻技术在塑料薄膜上制造的铝纳米狭缝可以提供可定制的Fano共振。不断变化的纳米结构高度和沉积的金属膜厚度调节了透射光谱,从伍德的异常主导共振,不对称的Fano轮廓到表面等离子激元共振变化。对于生物层检测,最大表面灵敏度发生在不对称Fano轮廓的下陷处。最佳Fano因子接近-1.3。对表面厚度的波长和强度敏感性分别高达2.58 nm / nm和90%/ nm。厚度的检测极限(LOD)达到0.018 nm。我们归因于封盖的铝纳米狭缝的表面灵敏度提高归因于渐逝长度的减小和非对称Fano轮廓的陡峭斜率。蛋白质相互作用实验验证了封端纳米结构的高灵敏度。 LOD降至236 fg / mL。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号