首页> 美国卫生研究院文献>Scientific Reports >Effect of Nitrogen Doping and Temperature on Mechanical Durability of Silicon Carbide Thin Films
【2h】

Effect of Nitrogen Doping and Temperature on Mechanical Durability of Silicon Carbide Thin Films

机译:氮掺杂和温度对碳化硅薄膜机械耐久性的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Amorphous silicon carbide (a-SiC) films are promising solution for functional coatings intended for harsh environment due to their superior combination of physical and chemical properties and high temperature stability. However, the structural applications are limited by its brittleness. The possible solution may be an introduction of nitrogen atoms into the SiC structure. The effect of structure and composition on tribo-mechanical properties of magnetron-sputtered a-SiCxNy thin films with various nitrogen content (0–40 at.%) and C/Si close to one deposited on silicon substrates were evaluated before and after exposure to high temperatures up to 1100 °C in air and vacuum. IR transmission spectroscopy revealed formation of multiple C-N bonds for the films with N content higher than 30 at.%. Improvement of the organization in the carbon phase with the increase of nitrogen content in the a-SiCN films was detected by Raman spectroscopy. Nanoindentation and scratch test point out on the beneficial effect of the nitrogen doping on the tribo-mechanical performance of a-SiCxNy coatings, especially for the annealed coatings. The improved fracture resistance of the SiCN films stems from the formation of triple C≡N bonds for the as deposited films and also by suppression of SiC clusters crystallization by incorporation of nitrogen atoms for annealed films. This together with higher susceptibility to oxidation of a-SiCN films impart them higher scratch and wear resistance in comparison to SiC films before as well as after the thermal exposure. The best tribo-mechanical performance in term of high hardness and sufficient level of ductility were observed for the a-Si0.32C0.32N0.36 film. The enhanced performance is preserved after the thermal exposure in air (up to 1100 °C) and vacuum (up to 900 °C) atmosphere. Annealing in oxidizing atmosphere has a beneficial effect in terms of tribological properties. Harder films with lower nitrogen content suffer from higher brittleness. FIB-SEM identified film-confined cracking as the initial failure event in SiC, while it was through-interface cracking for SiCN at higher loads. This points out on the higher fracture resistance of the SiCN films where higher strains are necessary for crack formation
机译:非晶碳化硅(a-SiC)膜是物理和化学性能与高温稳定性的完美结合,因此是用于恶劣环境的功能性涂层的有前途的解决方案。但是,结构应用受到其脆性的限制。可能的解决方案可能是将氮原子引入SiC结构。在暴露于硅衬底之前和之后,评估了结构和组成对磁控溅射的各种氮含量(0-40 at。%)和接近一个沉积在硅衬底上的C / Si的a-SiCxNy薄膜的摩擦机械性能的影响。在空气和真空中的最高温度可达1100C。红外透射光谱表明,N含量高于30at。%的薄膜形成了多个C-N键。通过拉曼光谱法检测到随着a-SiCN膜中氮含量的增加,碳相中组织的改善。纳米压痕和划痕测试指出了氮掺杂对a-SiCxNy涂层(尤其是退火涂层)的摩擦机械性能的有益影响。 SiCN膜抗断裂性的提高源自于沉积膜的三重C≡N键的形成,也归因于通过为退火膜引入氮原子来抑制SiC团簇结晶。与热暴露之前和之后的SiC薄膜相比,这与a-SiCN薄膜的较高的氧化敏感性共同赋予它们更高的抗划伤性和耐磨性。就a-Si0.32C0.32N0.36薄膜而言,就高硬度和足够的延展性而言,摩擦性能最佳。在空气(最高1100 C)和真空(最高900 C)的环境中进行热暴露后,可以保持增强的性能。就摩擦学性质而言,在氧化气氛中进行退火具有有益的作用。氮含量较低的较硬薄膜的脆性较高。 FIB-SEM将薄膜限制的开裂确定为SiC中的初始破坏事件,而在较高负载下,SiCN的通界面开裂则是。这表明SiCN膜具有更高的抗断裂性,其中裂纹形成需要更高的应变

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号