首页> 美国卫生研究院文献>Scientific Reports >The Structural Dynamics of Engineered β-Lactamases Vary Broadly on Three Timescales yet Sustain Native Function
【2h】

The Structural Dynamics of Engineered β-Lactamases Vary Broadly on Three Timescales yet Sustain Native Function

机译:工程β-内酰胺酶的结构动力学在三个时间尺度上变化很大但维持天然功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the principles of protein dynamics will help guide engineering of protein function: altering protein motions may be a barrier to success or may be an enabling tool for protein engineering. The impact of dynamics on protein function is typically reported over a fraction of the full scope of motional timescales. If motional patterns vary significantly at different timescales, then only by monitoring motions broadly will we understand the impact of protein dynamics on engineering functional proteins. Using an integrative approach combining experimental and in silico methodologies, we elucidate protein dynamics over the entire span of fast to slow timescales (ps to ms) for a laboratory-engineered system composed of five interrelated β-lactamases: two natural homologs and three laboratory-recombined variants. Fast (ps-ns) and intermediate (ns-µs) dynamics were mostly conserved. However, slow motions (µs-ms) were few and conserved in the natural homologs yet were numerous and widely dispersed in their recombinants. Nonetheless, modified slow dynamics were functionally tolerated. Crystallographic B-factors from high-resolution X-ray structures were partly predictive of the conserved motions but not of the new slow motions captured in our solution studies. Our inspection of protein dynamics over a continuous range of timescales vividly illustrates the complexity of dynamic impacts of protein engineering as well as the functional tolerance of an engineered enzyme system to new slow motions.
机译:了解蛋白质动力学原理将有助于指导蛋白质功能的工程设计:改变蛋白质运动可能是成功的障碍,或者可能是蛋白质工程设计的辅助工具。动力学对蛋白质功能的影响通常在整个运动时标的一小部分中报告。如果运动模式在不同的时间尺度上发生显着变化,那么只有广泛地监视运动,我们才能了解蛋白质动力学对工程功能蛋白的影响。通过结合实验方法和计算机方法学的整合方法,我们阐明了由五种相互关联的β-内酰胺酶组成的实验室工程系统,在从快到慢的整个时间范围(ps到ms)内的蛋白质动力学:两个自然同源物和三个实验室-重组变体。快速(ps-ns)和中间(ns-µs)的动态大多数情况下是保守的。然而,慢动作(µs-ms)很少且在天然同源物中是保守的,但在其重组物中却很多且广泛分布。尽管如此,在功能上可以容忍修改后的慢动态。来自高分辨率X射线结构的晶体学B因子部分预测了保守运动,但不能预测我们的溶液研究中捕获的新的慢运动。我们对连续时间范围内蛋白质动力学的检查生动地说明了蛋白质工程动态影响的复杂性以及工程化酶系统对新慢动作的功能耐受性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号