首页> 外文会议>Conference on biochemical and molecular engineering >PROTEIN DYNAMICS AT SLOW TIM ESC ALES IN ENGINEERED ss-LACTAMASES DOES NOT LIMIT EVOLVABILITY
【24h】

PROTEIN DYNAMICS AT SLOW TIM ESC ALES IN ENGINEERED ss-LACTAMASES DOES NOT LIMIT EVOLVABILITY

机译:ss-内酰胺酶在慢TIM ESC啤酒中的蛋白质动力学并不限制其进化性

获取原文

摘要

Understanding the underlying mechanisms in the evolution of new protein functions is key to better directing enzyme engineering efforts. Intragenic epistasis (the non-additive interaction of mutations affecting function) is a key feature of protein evolution. For example, in TEM-1 ss-lactamase, the mutations E104K and G238S show positive epistasis in that their combination show a greater than expected increase in antibiotic resistance1. Here, we aim to understand the impact of protein dynamics at slow timescales on epistasis. Large conformational rearrangements associated with ligand-binding, turnover of substrate or allostery occur at this timescale. The readily evolvable antibiotic-resistant TEM-1 ss-lactamase and two of its variants that are more dynamic at slow timescales serve as models for this study. Our models show similar catalytic activity and substrate recognition, thermal stability, as well as conserved motions in fast (ps-ns) and intermediate (ns-μs) timescales but different motions at slow timescales (μs-ms). In this study, we use two different approaches to examine the effect of protein dynamics on epistasis. First, we introduced the epistatic mutations E104K and G238S into our dynamic variants. These mutations confer high resistance to the antibiotic cefotaxime in TEM-1, increasing catalytic efficiency ~250-fold. The dynamic variants present similar kinetic values and increase in catalytic efficiency as does TEM-1 when the epistatic mutations are introduced. Molecular dynamic simulations in the presence of cefotaxime support these observations, as the presence of the epistatic mutations correlates with an increase in catalytically-competent conformers. Secondly, we performed directed molecular evolution in TEM-1 and its dynamic variants towards the hydrolysis of the antibiotic cefotaxime. We examined whether mutational pathways accessible to TEM-1 are also available in the context of increased dynamics at the timescale of turnover. Overall, our work highlights that protein dynamics at slow timescales does not hinder the evolution of new activity in TEM-1 ss-lactamase engineered variants. Furthermore, epistasis can be maintained despite differences in dynamics at slow timescales.
机译:了解新蛋白质功能进化的基本机制是更好地指导酶工程工作的关键。基因内上位性(影响功能的突变的非加性相互作用)是蛋白质进化的关键特征。例如,在TEM-1 ss-内酰胺酶中,突变E104K和G238S显示出阳性上位性,因为它们的组合显示出比预期更大的抗生素耐药性1。在这里,我们旨在了解慢时间尺度上的蛋白质动力学对上位性的影响。与配体结合,底物更新或变构相关的大构象重排在此时间范围内发生。易于进化的抗生素抗性TEM-1β-内酰胺酶及其两个变体,在较慢的时间范围内具有更大的动态,可作为本研究的模型。我们的模型显示出相似的催化活性和底物识别,热稳定性,以及在快速(ps-ns)和中间(ns-μs)时标中的保守运动,但在慢速时标(μs-ms)中有不同的运动。在这项研究中,我们使用两种不同的方法来检查蛋白质动力学对上位性的影响。首先,我们将上位性突变E104K和G238S引入我们的动态变体中。这些突变赋予TEM-1中的抗生素头孢噻肟高度耐药性,将催化效率提高了约250倍。当引入上位突变时,动态变体具有与TEM-1相似的动力学值并提高了催化效率。头孢噻肟存在下的分子动力学模拟支持了这些观察结果,因为上位性突变的存在与催化活性构象体的增加相关。其次,我们在TEM-1及其动态变异体中进行了定向分子进化,以促进抗生素头孢噻肟的水解。我们检查了在周转时间尺度上动态增加的背景下,是否也可获得可用于TEM-1的突变途径。总体而言,我们的工作突出了在慢时间尺度上的蛋白质动力学不会阻碍TEM-1 ss-内酰胺酶工程变体中新活性的进化。此外,尽管在缓慢的时间尺度上动力学存在差异,但仍可以维持上位性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号