...
首页> 外文期刊>Frontiers in Molecular Biosciences >Known Evolutionary Paths Are Accessible to Engineered ?-Lactamases Having Altered Protein Motions at the Timescale of Catalytic Turnover
【24h】

Known Evolutionary Paths Are Accessible to Engineered ?-Lactamases Having Altered Protein Motions at the Timescale of Catalytic Turnover

机译:已知的进化路径可用于在催化转包的时间尺度下具有改变的蛋白质运动的蛋白质运动

获取原文
           

摘要

The evolution of new protein functions is dependent upon inherent biophysical features of proteins. Whereas it has been shown that changes in protein dynamics can occur in the course of directed molecular evolution trajectories and contribute to new function, it is not known whether varying protein dynamics modify the course of evolution. We investigate this question using three related ?-lactamases displaying dynamics that differ broadly at the slow timescale that corresponds to catalytic turnover yet have similar fast dynamics, thermal stability, catalytic and substrate recognition profiles. Introduction of substitutions E014K and G238S, that are known to have a synergistic effect on function in the parent ?-lactamase, showed similar increases in catalytic efficiency towards cefotaxime in the related ?-lactamases. Molecular simulations using Protein Energy Landscape Exploration reveal that this results from stabilizing the catalytically-productive conformations, demonstrating the dominance of the synergistic effect of the E014K and G238S substitutions in vitro in contexts that vary in terms of sequence and dynamics. Furthermore, three rounds of directed molecular evolution demonstrated that known cefotaximase-enhancing mutations were accessible regardless of the differences in dynamics. Interestingly, specific sequence differences between the related ?-lactamases were shown to have a higher effect in evolutionary outcomes than did differences in dynamics. Overall, these ?-lactamase models show tolerance to protein dynamics at the timescale of catalytic turnover in the evolution of a new function.
机译:新蛋白质功能的演变取决于蛋白质的固有生物物理特征。然而,已经表明,蛋白质动力学的变化可能发生在定向分子演化轨迹的过程中,并且有助于新功能,并不知道不同的蛋白质动力学是否改变进化过程。我们使用三个相关的? - 酰胺酶显示在慢慢时间内差异的动态进行调查这个问题,该动力学与催化转换相对应的快速动力学,热稳定性,催化和基板识别曲线。替代E014K和G238S的引入,已知对亲酰胺酶的功能具有协同作用,表明催化效率与相关的β-酰亚胺酶中的头孢糖相似。使用蛋白质能量景观勘探的分子模拟揭示了这导致稳定催化生产性兼容性,证明在序列和动态方面的体外中的e014k和G238s取代的协同作用的优势。此外,无论动态的差异如何,都展示了三轮定向分子演进术语,无论动力学的差异如何,可获得已知的头孢唑胺酶增强突变。有趣的是,相关的序列之间的特定序列差异显示出在进化结果中具有比动态的差异在进化结果中具有更高的效果。总的来说,这些α-酰亚胺酶模型在新功能的演变中显示出对催化周转速度的蛋白质动态的耐受性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号