首页> 美国卫生研究院文献>SpringerPlus >Newton–Raphson preconditioner for Krylov type solvers on GPU devices
【2h】

Newton–Raphson preconditioner for Krylov type solvers on GPU devices

机译:用于GPU设备上的Krylov型求解器的Newton–Raphson预处理器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new Newton–Raphson method based preconditioner for Krylov type linear equation solvers for GPGPU is developed, and the performance is investigated. Conventional preconditioners improve the convergence of Krylov type solvers, and perform well on CPUs. However, they do not perform well on GPGPUs, because of the complexity of implementing powerful preconditioners. The developed preconditioner is based on the BFGS Hessian matrix approximation technique, which is well known as a robust and fast nonlinear equation solver. Because the Hessian matrix in the BFGS represents the coefficient matrix of a system of linear equations in some sense, the approximated Hessian matrix can be a preconditioner. On the other hand, BFGS is required to store dense matrices and to invert them, which should be avoided on modern computers and supercomputers. To overcome these disadvantages, we therefore introduce a limited memory BFGS, which requires less memory space and less computational effort than the BFGS. In addition, a limited memory BFGS can be implemented with BLAS libraries, which are well optimized for target architectures. There are advantages and disadvantages to the Hessian matrix approximation becoming better as the Krylov solver iteration continues. The preconditioning matrix varies through Krylov solver iterations, and only flexible Krylov solvers can work well with the developed preconditioner. The GCR method, which is a flexible Krylov solver, is employed because of the prevalence of GCR as a Krylov solver with a variable preconditioner. As a result of the performance investigation, the new preconditioner indicates the following benefits: (1) The new preconditioner is robust; i.e., it converges while conventional preconditioners (the diagonal scaling, and the SSOR preconditioners) fail. (2) In the best case scenarios, it is over 10 times faster than conventional preconditioners on a CPU. (3) Because it requries only simple operations, it performs well on a GPGPU. In addition, the research has confirmed that the new preconditioner improves the condition of matrices from a mathematical point of view by calculating the condition numbers of preconditioned matrices, as anticipated by the theoretical analysis.
机译:针对GPGPU的Krylov型线性方程求解器,开发了一种基于Newton-Raphson方法的预处理器,并对其性能进行了研究。常规的预处理器改善了Krylov类型求解器的收敛性,并在CPU上表现良好。但是,由于实现强大的前置条件的复杂性,它们在GPGPU上的性能不佳。所开发的预处理器基于BFGS Hessian矩阵逼近技术,该技术被称为健壮且快速的非线性方程求解器。因为BFGS中的Hessian矩阵在某种意义上表示线性方程组的系数矩阵,所以近似的Hessian矩阵可以作为前提条件。另一方面,BFGS需要存储密集矩阵并将其求逆,这在现代计算机和超级计算机中应避免。为了克服这些缺点,因此我们引入了有限的存储器BFGS,与BFGS相比,它需要更少的存储空间和更少的计算工作量。另外,可以使用BLAS库实现有限的内存BFGS,BLAS库针对目标体系结构进行了优化。随着Krylov求解器迭代的继续,Hessian矩阵逼近有优缺点。预处理矩阵在Krylov求解器迭代中会有所不同,只有灵活的Krylov求解器才能与开发的预处理器配合使用。使用GCR方法是一种灵活的Krylov求解器,因为GCR作为具有可变前置条件的Krylov求解器而盛行。作为性能调查的结果,新的预处理器具有以下优点:(1)新的预处理器很健壮;即,它会收敛,而传统的预处理器(对角缩放和SSOR预处理器)会失败。 (2)在最佳情况下,它比CPU上常规预处理器快10倍以上。 (3)由于它仅需要简单的操作,因此在GPGPU上表现良好。另外,研究已经证实,如理论分析所预期的那样,该新的预处理器通过计算预处理矩阵的条件数,从数学的角度改善了矩阵条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号