首页> 美国卫生研究院文献>Scientific Reports >Lithia/(Ir Li2IrO3) nanocomposites for new cathode materials based on pure anionic redox reaction
【2h】

Lithia/(Ir Li2IrO3) nanocomposites for new cathode materials based on pure anionic redox reaction

机译:基于纯阴离子氧化还原反应的新型正极材料Lithia /(IrLi2IrO3)纳米复合材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Anionic redox reactions attributed to oxygen have attracted much attention as a new approach to overcoming the energy-density limits of cathode materials. Several oxides have been suggested as new cathode materials with high capacities based on anionic (oxygen) redox reactions. Although most still have a large portion of their capacity based on the cationic redox reaction, lithia-based cathodes present high capacities that are purely dependent upon oxygen redox. Contrary to Li-air batteries, other systems using pure oxygen redox reactions, lithia-based cathodes charge and discharge without a phase transition between gas and condensed forms. This leads to a more stable cyclic performance and lower overpotential compared with those of Li-air systems. However, to activate nanolithia and stabilize reaction products such as Li2O2 during cycling, lithia-based cathodes demand efficient catalysts (dopants). In this study, Ir based materials (Ir and Li2IrO3) were introduced as catalysts (dopants) for nanolithia composites. Oxide types (Li2IrO3) were used as source materials of catalyst because ductile metal (Ir) can hardly be pulverized during the milling process. Two types of Li2IrO3 were prepared and used for catalyst-sources. They were named ‘1-step Li2IrO3’ and ‘2-step Li2IrO3’, respectively, since they were prepared by ‘1-step’ or ‘2-step’ heat treatment. The nanocomposites prepared using lithia & 2-step Li2IrO3 presented a higher capacity, more stable cyclic performance, and lower overpotential than those of the nanocomposites prepared using lithia & 1-step Li2IrO3. The voltage profiles of the nanocomposites prepared using lithia & 2-step Li2IrO3 were stable up to a limited capacity of 600 mAh·g−1, and the capacity was maintained during 100 cycles. XPS analysis confirmed that the capacity of our lithia-based compounds is attributable to the oxygen redox reaction, whereas the cationic redox related to the Ir barely contributes to their discharge capacity.
机译:作为克服阴极材料的能量密度极限的新方法,归因于氧的阴离子氧化还原反应已引起了广泛的关注。已经提出了几种基于阴离子(氧)氧化还原反应的具有高容量的新型阴极材料。尽管大多数仍基于阳离子氧化还原反应而具有很大一部分容量,但基于锂的阴极呈现出高容量,其完全依赖于氧氧化还原。与锂空气电池相反,其他使用纯氧氧化还原反应的系统,基于锂的阴极充放电时,气体和冷凝形式之间没有相变。与Li-air系统相比,这导致更稳定的循环性能和更低的超电势。但是,为了在循环过程中激活纳米石并稳定反应产物(例如Li2O2),基于锂的阴极需要高效的催化剂(掺杂剂)。在这项研究中,基于Ir的材料(Ir和Li2IrO3)被引入作为纳米锂复合材料的催化剂(掺杂剂)。氧化物类型(Li2IrO3)用作催化剂的原料,因为在研磨过程中很难将易碎金属(Ir)粉碎。制备了两种类型的Li2IrO3并将其用作催化剂源。由于它们是通过“ 1步”或“ 2步”热处理制备的,因此分别命名为“ 1步Li2IrO3”和“ 2步Li2IrO3”。与使用锂电和一步法Li2IrO3制备的纳米复合材料相比,使用锂电和一步法Li2IrO3制备的纳米复合材料具有更高的容量,更稳定的循环性能和更低的超电势。锂和两步Li 2 IrO 3 制备的纳米复合材料的电压曲线在600 mAh·g -1的极限容量下稳定。 sup>,并且在100个循环中保持容量。 XPS分析证实,我们基于锂的化合物的容量可归因于氧的氧化还原反应,而与Ir相关的阳离子氧化还原几乎不影响其放电容量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号