首页> 美国卫生研究院文献>Tissue Engineering. Part A >Deciphering Mechanical Regulation of Chondrogenesis in Fibrin–Polyurethane Composite Scaffolds Enriched with Human Mesenchymal Stem Cells: A Dual Computational and Experimental Approach
【2h】

Deciphering Mechanical Regulation of Chondrogenesis in Fibrin–Polyurethane Composite Scaffolds Enriched with Human Mesenchymal Stem Cells: A Dual Computational and Experimental Approach

机译:富集人间充质干细胞的纤维蛋白-聚氨酯复合支架中软骨形成的破译机械调节:双重计算和实验方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fibrin–polyurethane composite scaffolds support chondrogenesis of human mesenchymal stem cells (hMSCs) derived from bone marrow and due to their robust mechanical properties allow mechanical loading in dynamic bioreactors, which has been shown to increase the chondrogenic differentiation of MSCs through the transforming growth factor beta pathway. The aim of this study was to use the finite element method, mechanical testing, and dynamic in vitro cell culture experiments on hMSC-enriched fibrin–polyurethane composite scaffolds to quantitatively decipher the mechanoregulation of chondrogenesis within these constructs. The study identified compressive principal strains as the key regulator of chondrogenesis in the constructs. Although dynamic uniaxial compression did not induce chondrogenesis, multiaxial loading by combined application of dynamic compression and interfacial shear induced significant chondrogenesis at locations where all the three principal strains were compressive and had a minimum magnitude of 10%. In contrast, no direct correlation was identified between the level of pore fluid velocity and chondrogenesis. Due to the high permeability of the constructs, the pore fluid pressures could not be increased sufficiently by mechanical loading, and instead, chondrogenesis was induced by triaxial compressive deformations of the matrix with a minimum magnitude of 10%. Thus, it can be concluded that dynamic triaxial compressive deformations of the matrix is sufficient to induce chondrogenesis in a threshold-dependent manner, even where the pore fluid pressure is negligible.
机译:纤维蛋白-聚氨酯复合支架支持源自骨髓的人间充质干细胞(hMSCs)的软骨形成,并且由于其强大的机械性能,可以在动态生物反应器中进行机械负载,这已被证明可通过转化生长因子β来增强MSC的软骨形成分化途径。本研究的目的是在富集hMSC的纤维蛋白-聚氨酯复合支架上使用有限元方法,力学测试和动态体外细胞培养实验,以定量地解读这些构建物中软骨形成的机械化机制。该研究确定了压缩性主要菌株是构建物中软骨形成的关键调控因子。尽管动态单轴压缩不会诱导软骨形成,但在三个主要应变都处于压缩状态且最小幅度为10%的位置,通过动态压缩和界面剪切联合施加的多轴载荷会导致显着的软骨生成。相反,在孔隙流体速度水平与软骨形成之间没有直接相关性。由于构造物的高渗透性,无法通过机械载荷充分提高孔隙流体压力,取而代之的是,基质的三轴压缩变形(最小幅度为10%)诱导了软骨形成。因此,可以得出结论,即使孔隙流体压力可以忽略不计,基质的动态三轴压缩变形也足以以阈值相关的方式诱导软骨形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号