首页> 美国卫生研究院文献>Journal of Experimental Botany >Futile Na+ cycling at the root plasma membrane in rice (Oryza sativa L.): kinetics energetics and relationship to salinity tolerance
【2h】

Futile Na+ cycling at the root plasma membrane in rice (Oryza sativa L.): kinetics energetics and relationship to salinity tolerance

机译:水稻(Oryza sativa L.)根质膜上无用的Na +循环:动力学能量学及其与盐分耐性的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Globally, over one-third of irrigated land is affected by salinity, including much of the land under lowland rice cultivation in the tropics, seriously compromising yields of this most important of crop species. However, there remains an insufficient understanding of the cellular basis of salt tolerance in rice. Here, three methods of 24Na+ tracer analysis were used to investigate primary Na+ transport at the root plasma membrane in a salt-tolerant rice cultivar (Pokkali) and a salt-sensitive cultivar (IR29). Futile cycling of Na+ at the plasma membrane of intact roots occurred at both low and elevated levels of steady-state Na+ supply ([Na+]ext=1 mM and 25 mM) in both cultivars. At 25 mM [Na+]ext, a toxic condition for IR29, unidirectional influx and efflux of Na+ in this cultivar, but not in Pokkali, became very high [>100 μmol g (root FW)−1 h−1], demonstrating an inability to restrict sodium fluxes. Current models of sodium transport energetics across the plasma membrane in root cells predict that, if the sodium efflux were mediated by Na+/H+ antiport, this toxic scenario would impose a substantial respiratory cost in IR29. This cost is calculated here, and compared with root respiration, which, however, comprised only ∼50% of what would be required to sustain efflux by the antiporter. This suggests that either the conventional ‘leak-pump’ model of Na+ transport or the energetic model of proton-linked Na+ transport may require some revision. In addition, the lack of suppression of Na+ influx by both K+ and Ca2+, and by the application of the channel inhibitors Cs+, TEA+, and Ba2+, questions the participation of potassium channels and non-selective cation channels in the observed Na+ fluxes.
机译:在全球范围内,超过三分之一的灌溉土地受到盐碱化的影响,其中包括热带地区许多低地水稻种植的土地,严重损害了这一最重要的农作物的产量。然而,对水稻耐盐性的细胞基础仍然缺乏足够的了解。在这里,使用 24 Na + 示踪分析的三种方法研究耐盐水稻根质膜上Na + 的初次转运品种(Pokkali)和盐敏感品种(IR29)。 Na + 在完整根质膜上的无效循环发生在低水平和升高的稳态Na + 供给水平([Na + ] ext = 1 mM和25 mM)。在25 mM [Na + ] ext处,该品种对IR29的毒性条件,Na + 的单向流入和Nalux流出,但在Pokkali却不高,[29] 100μmolg(根FW) -1 h -1 ],表明不能限制钠通量。当前钠离子穿过根细胞质膜的转运能模型预测,如果钠流出是由Na + / H + 反向转运介导的,则这种有毒情况将导致IR29中的大量呼吸成本。在此计算成本,并将其与根部呼吸进行比较,但根部呼吸仅占反向转运蛋白维持外排所需的约50%。这表明,Na + 输运的常规“泄漏泵”模型或质子连接的Na + 输运的能量模型都可能需要修改。此外,K + 和Ca 2 + 以及通道抑制剂Cs的应用都不能抑制Na + 的涌入 + ,TEA + 和Ba 2 + 质疑钾离子通道和非选择性阳离子通道在观察到的Na 中的参与+ 通量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号