首页> 美国卫生研究院文献>Journal of Neurophysiology >Biology of Neuroengineering Interfaces: Differential effect of brief electrical stimulation on voltage-gated potassium channels
【2h】

Biology of Neuroengineering Interfaces: Differential effect of brief electrical stimulation on voltage-gated potassium channels

机译:神经工程接口生物学:短暂电刺激对电压门控钾通道的不同作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (NaV channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (KV channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different KV-channel subtypes. Computational modeling reveals substantial differences in the response of specific KV-channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different KV-channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that KV-channel expression is an important determinant of the sensitivity of neurons to electrical stimulation.>NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (KV channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between KV channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or “fading,” may be attributed to KV-channel activation.
机译:电刺激神经元组织是治疗多种神经系统疾病的一种有前途的策略。外部电刺激激活神经元的机制由电压门控离子通道控制。这种刺激(通常是短暂的刺激)会导致膜电位去极化,这会通过增加这些电压门控通道的打开概率来增加跨膜的离子流。在尖峰神经元中,电压门控钠通道(NaV通道)的激活导致动作电位的产生。然而,表达了也响应电刺激的几种其他类型的电压门控通道。在这项研究中,我们研究了通过全细胞膜片钳电生理学和计算模型对电压门控钾通道(KV通道)对短暂电刺激的响应。我们表明,非尖峰的视网膜无长突神经元表现出由不同的KV通道亚型驱动的多种刺激反应。计算模型揭示了特定KV通道亚型在响应中的实质性差异,这取决于通道动力学。这表明,视网膜神经元中不同KV通道亚型的表达水平是可获得反应的关键指标。这些数据扩展了我们对神经元激活机制的认识,并表明KV通道表达是神经元对电刺激敏感性的重要决定因素。> NEW&NOTEWORTHY 门控钾通道(KV通道)可以进行短暂的电刺激,例如在义肢电刺激过程中施加的电刺激。我们表明,响应的模式在KV通道亚型之间有很大不同,具体取决于每个通道的激活和失活动力学。我们的数据表明,人为刺激神经元时遇到的问题,例如高频发射停止或“衰落”,可能归因于KV通道激活。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号