首页> 美国卫生研究院文献>Journal of Biomechanical Engineering >Finite Element Analysis of Traction Force Microscopy: Influence of Cell Mechanics Adhesion and Morphology
【2h】

Finite Element Analysis of Traction Force Microscopy: Influence of Cell Mechanics Adhesion and Morphology

机译:牵引力显微镜的有限元分析:细胞力学粘附和形态的影响。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The interactions between adherent cells and their extracellular matrix (ECM) have been shown to play an important role in many biological processes, such as wound healing, morphogenesis, differentiation, and cell migration. Cells attach to the ECM at focal adhesion sites and transmit contractile forces to the substrate via cytoskeletal actin stress fibers. This contraction results in traction stresses within the substrate/ECM. Traction force microscopy (TFM) is an experimental technique used to quantify the contractile forces generated by adherent cells. In TFM, cells are seeded on a flexible substrate and displacements of the substrate caused by cell contraction are tracked and converted to a traction stress field. The magnitude of these traction stresses are normally used as a surrogate measure of internal cell contractile force or contractility. We hypothesize that in addition to contractile force, other biomechanical properties including cell stiffness, adhesion energy density, and cell morphology may affect the traction stresses measured by TFM. In this study, we developed finite element models of the 2D and 3D TFM techniques to investigate how changes in several biomechanical properties alter the traction stresses measured by TFM. We independently varied cell stiffness, cell-ECM adhesion energy density, cell aspect ratio, and contractility and performed a sensitivity analysis to determine which parameters significantly contribute to the measured maximum traction stress and net contractile moment. Results suggest that changes in cell stiffness and adhesion energy density can significantly alter measured tractions, independent of contractility. Based on a sensitivity analysis, we developed a correction factor to account for changes in cell stiffness and adhesion and successfully applied this correction factor algorithm to experimental TFM measurements in invasive and noninvasive cancer cells. Therefore, application of these types of corrections to TFM measurements can yield more accurate estimates of cell contractility.
机译:粘附细胞与其细胞外基质(ECM)之间的相互作用已显示在许多生物学过程中发挥重要作用,例如伤口愈合,形态发生,分化和细胞迁移。细胞在粘着斑处附着在ECM上,并通过细胞骨架肌动蛋白应激纤维将收缩力传递至基质。该收缩导致衬底/ ECM内的牵引应力。牵引力显微镜(TFM)是一种用于量化粘附细胞产生的收缩力的实验技术。在TFM中,将细胞播种在柔性基板上,并跟踪由细胞收缩引起的基板位移,并将其转换为牵引应力场。这些牵引应力的大小通常用作内部细胞收缩力或收缩力的替代量度。我们假设除收缩力外,其他生物力学特性(包括细胞刚度,粘附能密度和细胞形态)可能会影响TFM测量的牵引应力。在这项研究中,我们开发了2D和3D TFM技术的有限元模型,以研究几种生物力学性能的变化如何改变TFM测量的牵引应力。我们独立地改变细胞刚度,细胞ECM粘附能密度,细胞长宽比和收缩力,并进行敏感性分析,以确定哪些参数显着影响了测得的最大牵引应力和净收缩力矩。结果表明,细胞刚度和粘附能密度的变化可显着改变测得的牵引力,而与收缩力无关。基于敏感性分析,我们开发了一种校正因子来说明细胞刚度和粘附力的变化,并将该校正因子算法成功应用于侵袭性和非侵袭性癌细胞的实验TFM测量。因此,将这些类型的校正应用于TFM测量可以产生更准确的细胞收缩力估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号