首页> 美国卫生研究院文献>Human Molecular Genetics >Caspase-12 ablation preserves muscle function in the mdx mouse
【2h】

Caspase-12 ablation preserves muscle function in the mdx mouse

机译:Caspase-12切除可保持mdx小鼠的肌肉功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin. Several downstream consequences of dystrophin deficiency are triggers of endoplasmic reticulum (ER) stress, including loss of calcium homeostasis, hypoxia and oxidative stress. During ER stress, misfolded proteins accumulate in the ER lumen and the unfolded protein response (UPR) is triggered, leading to adaptation or apoptosis. We hypothesized that ER stress is heightened in dystrophic muscles and contributes to the pathology of DMD. We observed increases in the ER stress markers BiP and cleaved caspase-4 in DMD patient biopsies, compared with controls, and an increase in multiple UPR pathways in muscles of the dystrophin-deficient mdx mouse. We then crossed mdx mice with mice null for caspase-12, the murine equivalent of human caspase-4, which are resistant to ER stress. We found that deleting caspase-12 preserved mdx muscle function, resulting in a 75% recovery of both specific force generation and resistance to eccentric contractions. The compensatory hypertrophy normally found in mdx muscles was normalized in the absence of caspase-12; this was found to be due to decreased fibre sizes, and not to a fibre type shift or a decrease in fibrosis. Fibre central nucleation was not significantly altered in the absence of caspase-12, but muscle fibre degeneration found in the mdx mouse was reduced almost to wild-type levels. In conclusion, we have identified heightened ER stress and abnormal UPR signalling as novel contributors to the dystrophic phenotype. Caspase-4 is therefore a potential therapeutic target for DMD.
机译:杜兴氏肌营养不良症(DMD)是一种由肌营养不良蛋白突变引起的毁灭性肌肉萎缩性疾病。肌营养不良蛋白缺乏症的一些下游后果是内质网(ER)应激的诱因,包括钙稳态失衡,缺氧和氧化应激。在内质网应激期间,错误折叠的蛋白质会积聚在内腔内,并触发未折叠的蛋白质反应(UPR),从而导致适应或凋亡。我们假设营养不良的肌肉中的ER压力升高,并导致DMD的病理。我们观察到,与对照组相比,DMD患者活检中的ER应激标志物BiP和caspase-4裂解,以及肌营养不良蛋白缺陷型mdx小鼠肌肉中多个UPR途径的增加。然后,我们将mdx小鼠与caspase-12(鼠类人caspase-4的鼠等效物)无效的小鼠杂交,这些小鼠对ER胁迫具有抗性。我们发现删除caspase-12保留了mdx肌肉功能,从而导致比力生成和对离心收缩的抵抗力均恢复了75%。在不存在caspase-12的情况下,通常在mdx肌肉中发现的代偿性肥大得以恢复。发现这是由于纤维尺寸减小,而不是由于纤维类型变化或纤维化减少所致。在不存在caspase-12的情况下,纤维中央成核作用没有明显改变,但是在mdx小鼠中发现的肌肉纤维变性几乎减少到了野生型水平。总之,我们已经确定了高内质网应激和异常的UPR信号传导是营养不良表型的新贡献者。因此,胱天蛋白酶4是DMD的潜在治疗靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号