首页> 美国卫生研究院文献>American Journal of Physiology - Heart and Circulatory Physiology >Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis
【2h】

Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis

机译:逆向有限元分析的羊二尖瓣前小叶的体内材料特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We measured leaflet displacements and used inverse finite-element analysis to define, for the first time, the material properties of mitral valve (MV) leaflets in vivo. Sixteen miniature radiopaque markers were sewn to the MV annulus, 16 to the anterior MV leaflet, and 1 on each papillary muscle tip in 17 sheep. Four-dimensional coordinates were obtained from biplane videofluoroscopic marker images (60 frames/s) during three complete cardiac cycles. A finite-element model of the anterior MV leaflet was developed using marker coordinates at the end of isovolumic relaxation (IVR; when the pressure difference across the valve is ∼0), as the minimum stress reference state. Leaflet displacements were simulated during IVR using measured left ventricular and atrial pressures. The leaflet shear modulus (Gcirc-rad) and elastic moduli in both the commisure-commisure (Ecirc) and radial (Erad) directions were obtained using the method of feasible directions to minimize the difference between simulated and measured displacements. Group mean (±SD) values (17 animals, 3 heartbeats each, i.e., 51 cardiac cycles) were as follows: Gcirc-rad = 121 ± 22 N/mm2, Ecirc = 43 ± 18 N/mm2, and Erad = 11 ± 3 N/mm2 (Ecirc > Erad, P < 0.01). These values, much greater than those previously reported from in vitro studies, may result from activated neurally controlled contractile tissue within the leaflet that is inactive in excised tissues. This could have important implications, not only to our understanding of mitral valve physiology in the beating heart but for providing additional information to aid the development of more durable tissue-engineered bioprosthetic valves.
机译:我们测量了小叶的位移,并使用有限元逆分析首次定义了二尖瓣(MV)小叶在体内的材料特性。在17只绵羊的MV环上缝制了16个不透射线的微型标记,在MV前瓣上缝制了16个,在每个乳头肌尖端上缝制了1个。在三个完整的心动周期中,从双平面视频透视标记图像(60帧/秒)获得了三维坐标​​。使用等容血管舒张结束时的标记坐标(IVR;当瓣膜两端的压差约为0时)作为最小应力参考状态,建立了MV前叶的有限元模型。在IVR期间使用测量的左心室和心房压力模拟小叶移位。使用可行方向的方法来获得沿顺向(Ecirc)和径向(Erad)方向的小叶剪切模量(Gcirc-rad)和弹性模量,以最小化模拟位移和测量位移之间的差异。小组平均值(±SD)值(17只动物,每3个心跳,即51个​​心动周期)如下:Gcirc-rad = 121±22 N / mm 2 ,Ecirc = 43±18 N / mm 2 ,并且Erad = 11±3 N / mm 2 (Ecirc> Erad,P <0.01)。这些值远大于先前在体外研究中报告的值,可能是由于小叶内活化的神经控制的收缩组织在切除的组织中失活所致。这不仅对我们了解跳动的心脏中的二尖瓣生理有重要意义,而且对于提供更多信息以帮助开发更耐用的组织工程化生物人工瓣膜可能具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号