首页> 美国卫生研究院文献>American Journal of Physiology - Heart and Circulatory Physiology >Integrative Cardiovascular Physiology and Pathophysiology: Ca2+/calmodulin-dependent kinase II-dependent regulation of atrial myocyte late Na+ current Ca2+ cycling and excitability: a mathematical modeling study
【2h】

Integrative Cardiovascular Physiology and Pathophysiology: Ca2+/calmodulin-dependent kinase II-dependent regulation of atrial myocyte late Na+ current Ca2+ cycling and excitability: a mathematical modeling study

机译:综合心血管生理学和病理生理学:心房肌细胞晚Na +电流Ca2 +循环和兴奋性的Ca2 + /钙调蛋白依赖性激酶II依赖性调节:数学建模研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Atrial fibrillation (AF) affects more than three million people per year in the United States and is associated with high morbidity and mortality. Both electrical and structural remodeling contribute to AF, but the molecular pathways underlying AF pathogenesis are not well understood. Recently, a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the regulation of persistent “late” Na+ current (INa,L) has been identified. Although INa,L inhibition is emerging as a potential antiarrhythmic strategy in patients with AF, little is known about the mechanism linking INa,L to atrial arrhythmogenesis. A computational approach was used to test the hypothesis that increased CaMKII-activated INa,L in atrial myocytes disrupts Ca2+ homeostasis, promoting arrhythmogenic afterdepolarizations. Dynamic CaMKII activity and regulation of multiple downstream targets [INa,L, L-type Ca2+ current, phospholamban, and the ryanodine receptor sarcoplasmic reticulum Ca2+-release channel (RyR2)] were incorporated into an existing well-validated computational model of the human atrial action potential. Model simulations showed that constitutive CaMKII-dependent phosphorylation of Nav1.5 and the subsequent increase in INa,L effectively disrupt intracellular atrial myocyte ion homeostasis and CaMKII signaling. Specifically, increased INa,L promotes intracellular Ca2+ overload via forward-mode Na+/Ca2+ exchange activity, which greatly increases RyR2 open probability beyond that observed for CaMKII-dependent phosphorylation of RyR2 alone. Increased INa,L promotes atrial myocyte repolarization defects (afterdepolarizations and alternans) in the setting of acute β-adrenergic stimulation. We anticipate that our modeling efforts will help identify new mechanisms for atrial NaV1.5 regulation with direct relevance for human AF.>NEW & NOTEWORTHY Here, we present a novel computational model to study the effects of late Na+ current (INa,L) in human atrial myocytes. Simulations predict that INa,L promotes intracellular accumulation of Ca2+, with subsequent dysregulation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling and ryanodine receptor 2-mediated Ca2+ release. Although INa,L plays a small role in regulating atrial myocyte excitability at baseline, CaMKII-dependent enhancement of the current promoted arrhythmogenic dynamics.Listen to this article’s corresponding podcast at .
机译:在美国,心房纤颤(AF)每年影响超过300万人,并伴有高发病率和高死亡率。电和结构重塑都有助于房颤,但房颤发病机理的分子途径尚不清楚。最近,Ca 2 + /钙调蛋白依赖性蛋白激酶II(CaMKII)在调节持续的“晚期” Na + 电流(INa,L)中的作用确定。尽管对房颤患者而言,抑制INa,L逐渐成为一种潜在的抗心律不齐策略,但对于将INa,L与房性心律失常联系起来的机制知之甚少。一种计算方法被用来检验这一假说,即在心房肌细胞中CaMKII激活的INa,L增加会破坏Ca 2 + 稳态,从而促进去心律失常。 CaMKII的动态活性和对多个下游靶标[INa,L,L型Ca 2 + 电流,磷酸lamban和ban丹碱受体肌浆网Ca 2 + -释放通道的调节(RyR2)]整合到现有的经过验证的人类心房动作电位计算模型中。模型仿真显示,Nav1.5的组成型CaMKII依赖性磷酸化以及随后的INa,L的增加有效破坏了细胞内心房肌细胞离子稳态和CaMKII信号传导。具体而言,增加的Ina,L通过正向模式Na + / Ca 2 + 交换活性促进细胞内Ca 2 + 超载,从而大大增加RyR2超出单独的RyR2的CaMKII依赖性磷酸化所观察到的开放概率。在急性β-肾上腺素能刺激的情况下,增加的INa,L会促进心房肌细胞的复极缺陷(后去极化和交替蛋白)。我们预计我们的建模工作将有助于确定与人类房颤直接相关的心房NaV1.5调节的新机制。> NEW&NOTEWORTHY 在这里,我们提出一种新颖的计算模型来研究晚期Na <人心房肌细胞中的sup> + 电流(INa,L)。模拟预测INa,L会促进Ca 2 + 的细胞内蓄积,随后Ca 2 + /钙调蛋白依赖性蛋白激酶II(CaMKII)信号传导和ryanodine受体2失调。介导的Ca 2 + 释放。尽管INa,L在调节基线时心房肌细胞的兴奋性中起着很小的作用,但CaMKII依赖性增强目前促进的心律失常动力学。请参见本文相应的播客。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号