首页> 美国卫生研究院文献>Bioinformatics >Understanding the fabric of protein crystals: computational classification of biological interfaces and crystal contacts
【2h】

Understanding the fabric of protein crystals: computational classification of biological interfaces and crystal contacts

机译:了解蛋白质晶体的结构:生物界面和晶体接触的计算分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modern structural biology still draws the vast majority of information from crystallography, a technique where the objects being investigated are embedded in a crystal lattice. Given the complexity and variety of those objects, it becomes fundamental to computationally assess which of the interfaces in the lattice are biologically relevant and which are simply crystal contacts. Since the mid-1990s, several approaches have been applied to obtain high-accuracy classification of crystal contacts and biological protein–protein interfaces. This review provides an overview of the concepts and main approaches to protein interface classification: thermodynamic estimation of interface stability, evolutionary approaches based on conservation of interface residues, and co-occurrence of the interface across different crystal forms. Among the three categories, evolutionary approaches offer the strongest promise for improvement, thanks to the incessant growth in sequence knowledge. Importantly, protein interface classification algorithms can also be used on multimeric structures obtained using other high-resolution techniques or for protein assembly design or validation purposes. A key issue linked to protein interface classification is the identification of the biological assembly of a crystal structure and the analysis of its symmetry. Here, we highlight the most important concepts and problems to be overcome in assembly prediction. Over the next few years, tools and concepts of interface classification will probably become more frequently used and integrated in several areas of structural biology and structural bioinformatics. Among the main challenges for the future are better addressing of weak interfaces and the application of interface classification concepts to prediction problems like protein–protein docking.>Supplementary information: are available at Bioinformatics online.>Contact:
机译:现代结构生物学仍然从晶体学中吸取绝大多数信息,晶体学是一种将被研究对象嵌入晶格中的技术。考虑到这些物体的复杂性和多样性,计算评估晶格中的哪些界面与生物学相关以及哪些仅仅是晶体接触就变得至关重要。自1990年代中期以来,已经采用了几种方法来获得晶体接触和生物蛋白质-蛋白质界面的高精度分类。这篇综述提供了蛋白质界面分类的概念和主要方法的概述:界面稳定性的热力学估算,基于界面残基保守性的进化方法以及跨不同晶体形式共存的界面。在这三类中,由于序列知识的不断增长,进化方法为改进提供了最大的希望。重要的是,蛋白质界面分类算法也可用于使用其他高分辨率技术获得的多聚体结构,或用于蛋白质装配设计或验证目的。与蛋白质界面分类相关的一个关键问题是晶体结构生物组装的鉴定和对称性分析。在这里,我们重点介绍了装配预测中需要克服的最重要的概念和问题。在接下来的几年中,接口分类的工具和概念可能会在结构生物学和结构生物信息学的多个领域中得到更广泛的使用和整合。未来面临的主要挑战包括如何更好地解决弱接口问题,以及如何将接口分类概念应用于诸如蛋白质对蛋白质对接的预测问题。>补充信息:可在在线生物信息学上获得。>联系方式:

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号