首页> 美国卫生研究院文献>International Journal of Molecular Sciences >The Triple Amino Acid Substitution TAP-IVS in the EPSPS Gene Confers High Glyphosate Resistance to the Superweed Amaranthus hybridus
【2h】

The Triple Amino Acid Substitution TAP-IVS in the EPSPS Gene Confers High Glyphosate Resistance to the Superweed Amaranthus hybridus

机译:EPSPS基因中的三氨基酸取代TAP-IVS使高草甘膦抗性超颖花杂种

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The introduction of glyphosate-resistant (GR) crops revolutionized weed management; however, the improper use of this technology has selected for a wide range of weeds resistant to glyphosate, referred to as superweeds. We characterized the high glyphosate resistance level of an Amaranthus hybridus population (GRH)—a superweed collected in a GR-soybean field from Cordoba, Argentina—as well as the resistance mechanisms that govern it in comparison to a susceptible population (GSH). The GRH population was 100.6 times more resistant than the GSH population. Reduced absorption and metabolism of glyphosate, as well as gene duplication of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or its overexpression did not contribute to this resistance. However, GSH plants translocated at least 10% more 14C-glyphosate to the rest of the plant and roots than GRH plants at 9 h after treatment. In addition, a novel triple amino acid substitution from TAP (wild type, GSH) to IVS (triple mutant, GRH) was identified in the EPSPS gene of the GRH. The nucleotide substitutions consisted of ATA102, GTC103 and TCA106 instead of ACA102, GCG103, and CCA106, respectively. The hydrogen bond distances between Gly-101 and Arg-105 positions increased from 2.89 Å (wild type) to 2.93 Å (triple-mutant) according to the EPSPS structural modeling. These results support that the high level of glyphosate resistance of the GRH A. hybridus population was mainly governed by the triple mutation TAP-IVS found of the EPSPS target site, but the impaired translocation of herbicide also contributed in this resistance.
机译:抗草甘膦(GR)作物的引入彻底改变了杂草管理;然而,这种技术的不当使用已经选择了多种抗草甘膦的杂草,称为超级杂草。我们对characterized菜(Amaranthus hybridus)种群(GRH)的高草甘膦抗性水平(一种从阿根廷科尔多瓦的GR-大豆田中采集的杂草)进行了表征,并确定了与易感种群(GSH)相比对其进行抗性的机制。 GRH种群的抵抗力比GSH种群高100.6倍。草甘膦的吸收和代谢减少,以及5-烯醇式丙酮酸shi草酸酯-3-磷酸合酶(EPSPS)的基因复制或其过表达,均未导致这种耐药性。然而,在处理后9小时,GSH植物比GRH植物向植物的其余部分和根部转移的 14 C-草甘膦至少多10%。此外,在GRH的EPSPS基因中发现了从TAP(野生型,GSH)到IVS(三重突变体,GRH)的新型三氨基酸替代。核苷酸取代由ATA 102 ,GTC 103 和TCA 106 代替ACA 102 ,GCG 103 和CCA 106 。根据EPSPS结构模型,Gly-101和Arg-105位置之间的氢键距离从2.89Å(野生型)增加到2.93Å(三突变体)。这些结果支持了GRH杂交种高水平的草甘膦抗性主要是由EPSPS目标位点的三重突变TAP-IVS决定的,但是除草剂易位障碍也导致了这种抗性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号