首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Iron Corrosion Induced by Nonhydrogenotrophic Nitrate-Reducing Prolixibacter sp. Strain MIC1-1
【2h】

Iron Corrosion Induced by Nonhydrogenotrophic Nitrate-Reducing Prolixibacter sp. Strain MIC1-1

机译:还原非氢营养硝酸盐的Prolixibacter sp。引起的铁腐蚀MIC1-1菌株

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe0) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe0 oxidation. In this study, we describe Fe0 corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe0 as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe0-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe0 concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe0 foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe0 to reduce nitrate.
机译:金属材料的受微生物影响的腐蚀(MIC)带来了沉重的经济负担。厌氧条件下金属铁(Fe 0 )的MIC机理通常可以解释为氢营养型微生物消耗阴极氢,从而加速阳极Fe 0 的氧化。在这项研究中,我们描述了一种非还原性硝酸盐还原细菌MIC1-1诱导的Fe 0 腐蚀,该细菌是从日本秋田的一个油井中收集的原油样品中分离出来的。该应变需要特定的电子供体-受体组合和有机碳源才能生长。例如,该菌株在硝酸盐作为唯一的电子受体,而丙酮酸作为碳源,而Fe 0 作为唯一的电子供体,在厌氧条件下生长。另外,亚铁离子和l-半胱氨酸充当电子给体,而分子氢则不起作用。基于16S rRNA基因序列的系统发育分析表明,菌株MIC1-1是拟杆菌属的Prolixibacter属。因此,Prolixibacter sp.。 MIC1-1菌株是属于拟杆菌门的第一个腐蚀Fe 0 的代表。在厌氧条件下,Prolixibacter sp.。 MIC1-1伴随着硝酸盐的还原而腐蚀Fe 0 ,该菌株的铁溶解量是无菌对照的六倍。扫描电子显微镜分析表明,Fe 0 箔的表面形成了FePO4的微观晶体,并且一层FeCO3覆盖了FePO4晶体。我们建议Prolixibacter sp。的细胞。 MIC1-1直接从Fe 0 接受电子以还原硝酸盐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号