首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Complex Physiology and Compound Stress Responses during Fermentation of Alkali-Pretreated Corn Stover Hydrolysate by an Escherichia coli Ethanologen
【2h】

Complex Physiology and Compound Stress Responses during Fermentation of Alkali-Pretreated Corn Stover Hydrolysate by an Escherichia coli Ethanologen

机译:大肠杆菌乙醇原对碱预处理的玉米秸秆水解产物发酵过程中的复杂生理和复合胁迫响应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates.
机译:在碱预处理的植物水解物中厌氧生长的产乙醇大肠埃希氏菌的生理学是复杂的,尚未得到很好的研究。为了深入了解大肠杆菌对此类水解产物的反应方式,我们研究了一种大肠杆菌K-12乙醇原,它发酵了由玉米秸秆制备的水解产物,该玉米秸秆经过氨纤维膨胀预处理。尽管这种水解产物的糖含量高(约6%的葡萄糖,3%的木糖)且毒性较低,但在葡萄糖耗尽之前,大肠杆菌就停止了生长。尽管如此,细胞仍保持代谢活性,并继续将葡萄糖转化为乙醇,直到所有葡萄糖消耗完。基因表达谱揭示了在指数生长期,过渡期和糖酵解固定期的代谢生理学和细胞应激反应的复杂和变化模式。在指数和过渡阶段,部分地通过水解产物中可用的游离氨基酸减轻了高细胞维持和应激反应成本。然而,在耗尽大多数氨基酸之后,细胞进入固定相,并且由于水解产物中细胞维持的需求,葡萄糖发酵产生的ATP被完全消耗掉了。乙醇原的比较基因表达谱分析和代谢模型表明,缓解渗透压,木质素毒素和乙醇胁迫的高能成本共同限制了碱预处理木质纤维素水解产物的生长,糖利用率和乙醇产量。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号