首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Characterization of Poly-γ-Glutamate Hydrolase Encoded by a Bacteriophage Genome: Possible Role in Phage Infection of Bacillus subtilis Encapsulated with Poly-γ-Glutamate
【2h】

Characterization of Poly-γ-Glutamate Hydrolase Encoded by a Bacteriophage Genome: Possible Role in Phage Infection of Bacillus subtilis Encapsulated with Poly-γ-Glutamate

机译:噬菌体基因组编码的聚-γ-谷氨酸水解酶的表征:聚γ-谷氨酸包裹的枯草芽孢杆菌噬菌体感染的可能作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Some Bacillus subtilis strains, including natto (fermented soybeans) starter strains, produce a capsular polypeptide of glutamate with a γ-linkage, called poly-γ-glutamate (γ-PGA). We identified and purified a monomeric 25-kDa degradation enzyme for γ-PGA (designated γ-PGA hydrolase, PghP) from bacteriophage ΦNIT1 in B. subtilis host cells. The monomeric PghP internally hydrolyzed γ-PGA to oligopeptides, which were then specifically converted to tri-, tetra-, and penta-γ-glutamates. Monoiodoacetate and EDTA both inhibited the PghP activity, but Zn2+ or Mn2+ ions fully restored the enzyme activity inhibited by the chelator, suggesting that a cysteine residue(s) and these metal ions participate in the catalytic mechanism of the enzyme. The corresponding pghP gene was cloned and sequenced from the phage genome. The deduced PghP sequence (208 amino acids) with a calculated Mr of 22,939 was not significantly similar to any known enzyme. Thus, PghP is a novel γ-glutamyl hydrolase. Whereas phage ΦNIT1 proliferated in B. subtilis cells encapsulated with γ-PGA, phage BS5 lacking PghP did not survive well on such cells. Moreover, all nine phages that contaminated natto during fermentation produced PghP, supporting the notion that PghP is important in the infection of natto starters that produce γ-PGA. Analogous to polysaccharide capsules, γ-PGA appears to serve as a physical barrier to phage absorption. Phages break down the γ-PGA barrier via PghP so that phage progenies can easily establish infection in encapsulated cells.
机译:一些枯草芽孢杆菌菌株,包括纳豆(发酵大豆)发酵菌株,会产生带有γ链的谷氨酸荚膜多肽,称为聚γ-谷氨酸(γ-PGA)。我们从枯草芽孢杆菌宿主细胞中从噬菌体ΦNIT1鉴定并纯化了用于γ-PGA的单体25-kDa降解酶(称为γ-PGA水解酶,PghP)。单体PghP在内部将γ-PGA水解为寡肽,然后将其特异性转化为三,四和五γ-谷氨酸。单碘乙酸盐和EDTA均抑制PghP活性,但是Zn 2 + 或Mn 2 + 离子完全恢复了螯合剂抑制的酶活性,表明半胱氨酸残基这些金属离子参与了酶的催化机理。从噬菌体基因组克隆并测序相应的pghP基因。推论出的PghP序列(208个氨基酸)的Mr为22,939,与任何已知的酶都没有显着相似。因此,PghP是一种新型的γ-谷氨酰水解酶。噬菌体ΦNIT1在被γ-PGA包裹的枯草芽孢杆菌细胞中增殖,而缺乏PghP的噬菌体BS5在此类细胞上不能很好地存活。此外,在发酵过程中污染纳豆的所有九种噬菌体均产生了PghP,这支持了PghP在产生γ-PGA的纳豆发酵剂感染中很重要的观点。与多糖胶囊类似,γ-PGA似乎是噬菌体吸收的物理屏障。噬菌体通过PghP破坏γ-PGA屏障,因此噬菌体后代可以轻松地在封装的细胞中建立感染。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号