首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Fermentation and Sulfur Reduction in the Mat-Building Cyanobacterium Microcoleus chthonoplastes
【2h】

Fermentation and Sulfur Reduction in the Mat-Building Cyanobacterium Microcoleus chthonoplastes

机译:建立垫子的蓝藻微囊藻塑料的发酵和硫还原

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mat-building cyanobacterium Microcoleus chthonoplastes carried out a mixed-acid fermentation when incubated under anoxic conditions in the dark. Endogenous storage carbohydrate was fermented to acetate, ethanol, formate, lactate, H(inf2), and CO(inf2). Cells with a low glycogen content (about 0.3 (mu)mol of glucose per mg of protein) produced acetate and ethanol in equimolar amounts. In addition to glycogen, part of the osmoprotectant, glucosyl-glycerol, was degraded. The glucose component of glucosyl-glycerol was fermented, whereas glycerol was released into the medium. Cells with a high content of glycogen (about 2 (mu)mol of glucose per mg of protein) did not utilize glucosyl-glycerol. These cells produced more acetate than ethanol. M. chthonoplastes was also capable of using elemental sulfur as the electron acceptor during fermentation, resulting in the production of sulfide. With sulfur present, acetate production increased whereas ethanol production decreased. Also, less formate was produced and the evolution of hydrogen ceased completely. In general, the carbon recoveries were satisfactory but the oxidation-reduction balances were too high. The latter could be explained by assuming the reduction of ferric iron, which is associated with the cells, mediated by the oxidation of formate. The switch from photoautotrophic to fermentative metabolism did not require de novo protein synthesis, and fermentation started immediately upon transfer to dark anoxic conditions. From the molar ratios of the fermentation products and from measurement of enzyme activities in cell extracts, we concluded that glucose derived from glycogen and glucosyl-glycerol is degraded via the Embden-Meyerhof-Parnas pathway.
机译:当在黑暗中在缺氧条件下孵育时,具有垫子的蓝藻微囊藻将进行混合酸发酵。将内源性储存碳水化合物发酵成乙酸盐,乙醇,甲酸盐,乳酸盐,H(inf2)和CO(inf2)。糖原含量低的细胞(每毫克蛋白质约含0.3微摩尔葡萄糖)可产生等摩尔量的乙酸盐和乙醇。除糖原外,部分渗透保护剂葡萄糖基甘油也被降解。葡萄糖基甘油的葡萄糖成分被发酵,而甘油被释放到培养基中。糖原含量高的细胞(每毫克蛋白质约含2μmol葡萄糖)不利用葡萄糖基甘油。这些细胞比乙醇产生更多的乙酸盐。在发酵过程中,chonnoplastes也能够使用元素硫作为电子受体,从而产生硫化物。在存在硫的情况下,乙酸盐的产量增加而乙醇的产量下降。此外,生成的甲酸较少,并且氢气的释放完全停止了。通常,碳回收率令人满意,但是氧化还原平衡过高。后者可以通过假设由甲酸的氧化介导的与细胞相关的三价铁的还原来解释。从光合自养代谢向发酵代谢的转变不需要从头合成蛋白质,并且在转移至黑暗缺氧条件后立即开始发酵。从发酵产物的摩尔比和从细胞提取物中的酶活性的测量,我们得出结论,糖原和葡萄糖基甘油的葡萄糖通过Embden-Meyerhof-Parnas途径降解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号