class='head no_bottom_margin' id='sec1title'>Int'/> Direct Conversion of Human Fibroblasts into Neural Progenitors Using Transcription Factors Enriched in Human ESC-Derived Neural Progenitors
首页> 美国卫生研究院文献>Stem Cell Reports >Direct Conversion of Human Fibroblasts into Neural Progenitors Using Transcription Factors Enriched in Human ESC-Derived Neural Progenitors
【2h】

Direct Conversion of Human Fibroblasts into Neural Progenitors Using Transcription Factors Enriched in Human ESC-Derived Neural Progenitors

机译:使用富含人类ESC来源的神经祖细胞的转录因子将人类成纤维细胞直接转化为神经祖细胞。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionCertain progressive, degenerative, and ultimately fatal, neurological disorders, such as Huntington's disease (HD) and Alzheimer's disease (AD), cannot be effectively treated; therefore, there remains a need to elucidate the pathological progress behind these disorders, and further effective clinical interventions (). By taking advantage of pluripotency reprogramming technology, researchers can readily reprogram disease-specific induced pluripotent stem cells (iPSCs) from patients' somatic cells, and subject them to in vitro differentiation for generation of various disease-relevant cell types for disease modeling and drug development (). However, tumorigenic and spontaneous differentiation of iPSCs remains a concern. In addition to iPSCs, induced neurons (iNs), which can be directly converted from fibroblasts (FBs) by defined transcription factors (TFs) (), provide another source of neuronal cells for in vitro disease modeling and drug testing. The advantages of iN technology are that it can provide a fast and simple method for the generation of specific neuronal subtypes, and its use may avoid certain problems, such as uncontrolled cell differentiation and tumor formation, which are associated with hiPSCs. However, the induction of each neuronal subtype requires different combinations of defined factors (), and the yield of such iNs is still too low for meaningful clinical applications. Therefore, developing strategies that allow direct conversion of somatic cells into expandable neural stem cell/progenitor (NSC/NP) populations that possess multiple neural differentiation potentials is an important step toward the generation of patient-specific neural cell types on a scalable level.Previously, it was demonstrated that induced NP (iNPs) can be directly converted from mouse somatic cells by overexpressing various TF combinations (, , ). first demonstrated that expandable iNPs could be generated from FBs via a modified pluripotency reprogramming procedure, and the resulting iNPs were able to differentiate into neurons and glial cells. Subsequently, several studies reported the generation of iNPs through the introduction of neural-enriched factors with/without iPSC factors (, , ), and the resulting iNPs were able to differentiate into all three major neural cell types of the CNS. Meanwhile, reports show that human iNPs can also be converted from somatic cells via the introduction of TFs (, , ). In these studies, several TF combinations, including at least one of the iPS factors, were used for hiNP generation (), and the differentiation propensity of the iNPs described in the aforementioned studies was mainly restricted to CNS neurons.hESCs can be used as an in vitro differentiation model to generate neural phenotypes of various developmental stages, including embryonic NPs (ENPs) populations, and the critical neural genetic factors that contribute to the neural fate acquisition have begun to be uncovered (href="#bib13" rid="bib13" class=" bibr popnode">Hou et al., 2013, href="#bib30" rid="bib30" class=" bibr popnode">Rosa and Brivanlou, 2011, href="#bib35" rid="bib35" class=" bibr popnode">Zhang et al., 2010). Given that hESC-ENP populations possess broad differentiation potential to give rise to both CNS and PNS neural cell types, it may be possible to directly convert FBs into iNPs resembling hESC-ENPs through the use of TFs highly expressed in the hESC-ENP population.Here, we identified a panel of neural TFs (nTFs) highly enriched in hESC-ENPs compared with FBs, through comparative gene expression profiling. We defined two TF combinations, the overexpression of which can efficiently convert human FBs into multipotent iENPs. The iENP populations generated in this manner resemble hESC-ENPs in many respects, including their pattern of proliferation, gene expression profile, and in vitro and in vivo differentiation propensity. Importantly, we found that different combinations of TFs can induce iENP populations with varying proliferative features and regional differentiation preferences. We also demonstrated that neurons derived from AD- and HD-iENPs, recapitulated the major disease pathological features in vitro. Taken together, our results point toward a promising and reproducible strategy for generating iENPs from somatic cells for disease modeling and future clinical intervention.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介某些渐进的,退化的,最终致命的神经系统疾病,例如亨廷顿舞蹈病(HD) )和阿尔茨海默氏病(AD),无法得到有效治疗;因此,仍然需要阐明这些疾病背后的病理学进展,以及进一步有效的临床干预措施。利用多能性重编程技术,研究人员可以轻松地从患者的体细胞中重编程疾病特异性的诱导性多能干细胞(iPSC),并使它们进行体外分化以生成各种与疾病相关的细胞类型,以进行疾病建模和药物开发()。但是,iPSCs的致瘤性和自发分化仍然值得关注。除了iPSC之外,诱导神经元(iNs)可以通过定义的转录因子(TFs)从成纤维细胞(FBs)直接转化为(iNs),为体外疾病建模和药物测试提供了另一种神经元细胞来源。 iN技术的优势在于,它可以提供一种快速而简单的方法来生成特定的神经元亚型,并且其使用可以避免某些与hiPSC相关的问题,例如不受控制的细胞分化和肿瘤形成。但是,每种神经元亚型的诱导需要定义因子的不同组合(),并且此类iNs的产量对于有意义的临床应用而言仍然太低。因此,开发能够将体细胞直接转化为具有多种神经分化潜能的可扩展神经干细胞/祖细胞(NSC / NP)群体的策略,是在可扩展水平上生成患者特定神经细胞类型的重要一步。 ,这表明诱导的NP(iNPs)可以通过过量表达各种TF组合(,,)直接从小鼠体细胞转化而来。首次证明可通过改良的多能性重编程程序从FB产生可扩展的iNP,而所得的iNP能够分化为神经元和神经胶质细胞。随后,几项研究报道了通过引入具有/不具有iPSC因子(“”,“”)的神经富集因子来生成iNP的过程,并且所得iNP能够分化为CNS的所有三种主要神经细胞类型。同时,有报告显示,通过引入TF(,,),人iNP也可以从体细胞转化而来。在这些研究中,几种TF组合(包括至少一种iPS因子)被用于hiNP的产生(),并且上述研究中描述的iNP的分化倾向主要限于中枢神经系统神经元。在体外分化模型中生成包括胚胎NP(ENP)种群在内的各个发育阶段的神经表型,并且已经发现了有助于神经命运获得的关键神经遗传因素(href =“#bib13” rid = “ bib13” class =“ bibr popnode”> Hou等人,2013 ,href="#bib30" rid="bib30" class=" bibr popnode">罗莎和布里凡洛,2011年 ,href="#bib35" rid="bib35" class=" bibr popnode"> Zhang等人,2010 )。鉴于hESC-ENP群体具有广泛的分化潜力,可同时引起CNS和PNS神经细胞类型,因此有可能通过使用在hESC-ENP群体中高度表达的TF将FB直接转化为类似于hESC-ENP的iNP。在这里,我们通过比较基因表达谱,鉴定了一组比FB高度富含hESC-ENP的神经TF(nTF)。我们定义了两个TF组合,它们的过表达可以有效地将人类FB转换为多能iENP。以这种方式生成的iENP群体在许多方面类似于hESC-ENP,包括它们的增殖模式,基因表达谱以及体外和体内分化倾向。重要的是,我们发现不同的TF组合可以诱导iENP人群,具有不同的增殖特征和区域分化偏好。我们还证明了源自AD-和HD-iENP的神经元概括了体外的主要疾病病理特征。两者合计,我们的结果指向了一种有前途的和可重现的策略,用于从体细胞生成iENP,用于疾病建模和未来的临床干预。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号