首页> 美国卫生研究院文献>The Journal of Neuroscience >Action Potential Energetics at the Organismal Level Reveal a Trade-Off in Efficiency at High Firing Rates
【2h】

Action Potential Energetics at the Organismal Level Reveal a Trade-Off in Efficiency at High Firing Rates

机译:有机体的行动潜力能量学揭示了高射速下效率的权衡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The energetic costs of action potential (AP) production constrain the evolution of neural codes and brain networks. Cellular-level estimates of AP-related costs are typically based on voltage-dependent Na+ currents that drive active transport by the Na+/K+ ATPase to maintain the Na+ and K+ ion concentration gradients necessary for AP production. However, these estimates of AP cost have not been verified at the organismal level. Electric signaling in the weakly electric fish Eigenmannia virescens requires that specialized cells in an electric organ generate APs with large Na+ currents at high rates (200–600 Hz). We measured these currents using a voltage-clamp protocol and then estimated the energetic cost at the cellular level using standard methods. We then used this energy-intensive signaling behavior to measure changes in whole-animal energetics for small changes in electric discharge rate. At low rates, the whole-animal measure of AP cost was similar to our cellular-level estimates. However, AP cost increased nonlinearly with increasing firing rates. We show, with a biophysical model, that this nonlinearity can arise from the increasing cost of maintaining AP amplitude at high rates. Our results confirm that estimates of energetic costs based on Na+ influx are appropriate for low baseline firing rates, but that extrapolating to high firing rates may underestimate true costs in cases in which AP amplitude does not decrease. Moreover, the trade-off between energetic cost and firing rate suggests an additional constraint on the evolution of high-frequency signaling in neuronal systems.
机译:动作电位(AP)产生的高能成本限制了神经代码和大脑网络的发展。蜂窝级别的AP相关成本估算通常基于电压依赖性Na + 电流,该电流通过Na + / K + ATPase来维持生产AP所需的Na + 和K + 离子浓度梯度。但是,这些AP成本估计值尚未在有机体水平上得到验证。弱电鱼本征曼氏沼虾中的电信号要求电器官中的专门细胞以高速率(200–600 Hz)产生具有大Na + 电流的AP。我们使用电压钳协议测量了这些电流,然后使用标准方法估算了细胞水平的能量消耗。然后,我们使用这种能量密集型信号行为来测量全动物能量的变化,以了解放电速率的微小变化。在低费率下,整个动物的AP成本测算与我们的细胞水平估算值相似。但是,AP成本随着射速的增加而非线性增加。我们用生物物理模型表明,这种非线性可能是由于维持高速率下AP振幅的成本增加而引起的。我们的结果证实,基于Na + 涌入的能量消耗估算值适用于低基线点火速率,但如果AP幅值不降低,则推断为高点火速率可能会低估真实成本。此外,能量成本和发射速率之间的折衷表明对神经元系统中高频信号的演变有额外的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号