首页> 美国卫生研究院文献>The Journal of Neuroscience >Reduced Efficacy of the KCC2 Cotransporter Promotes Epileptic Oscillations in a Subiculum Network Model
【2h】

Reduced Efficacy of the KCC2 Cotransporter Promotes Epileptic Oscillations in a Subiculum Network Model

机译:KCC2 Cotransporter的功效降低会促进亚支配网络模型中的癫痫振荡。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pharmacoresistant epilepsy is a chronic neurological condition in which a basal brain hyperexcitability results in paroxysmal hypersynchronous neuronal discharges. Human temporal lobe epilepsy has been associated with dysfunction or loss of the potassium-chloride cotransporter KCC2 in a subset of pyramidal cells in the subiculum, a key structure generating epileptic activities. KCC2 regulates intraneuronal chloride and extracellular potassium levels by extruding both ions. Absence of effective KCC2 may alter the dynamics of chloride and potassium levels during repeated activation of GABAergic synapses due to interneuron activity. In turn, such GABAergic stress may itself affect Cl regulation. Such changes in ionic homeostasis may switch GABAergic signaling from inhibitory to excitatory in affected pyramidal cells and also increase neuronal excitability. Possibly these changes contribute to periodic bursting in pyramidal cells, an essential component in the onset of ictal epileptic events. We tested this hypothesis with a computational model of a subicular network with realistic connectivity. The pyramidal cell model explicitly incorporated the cotransporter KCC2 and its effects on the internal/external chloride and potassium levels. Our network model suggested the loss of KCC2 in a critical number of pyramidal cells increased external potassium and intracellular chloride concentrations leading to seizure-like field potential oscillations. These oscillations included transient discharges leading to ictal-like field events with frequency spectra as in vitro. Restoration of KCC2 function suppressed seizure activity and thus may present a useful therapeutic option. These simulations therefore suggest that reduced KCC2 cotransporter activity alone may underlie the generation of ictal discharges.>SIGNIFICANCE STATEMENT Ion regulation in the brain is a major determinant of neural excitability. Intracellular chloride in neurons, a partial determinant of the resting potential and the inhibitory reversal potentials, is regulated together with extracellular potassium via kation chloride cotransporters. During temporal lobe epilepsy, the homeostatic regulation of intracellular chloride is impaired in pyramidal cells, yet how this dysregulation may lead to seizures has not been explored. Using a realistic neural network model describing ion mechanisms, we show that chloride homeostasis pathology provokes seizure activity analogous to recordings from epileptogenic brain tissue. We show that there is a critical percentage of pathological cells required for seizure initiation. Our model predicts that restoration of the chloride homeostasis in pyramidal cells could be a viable antiepileptic strategy.
机译:药物耐受性癫痫是一种慢性神经系统疾病,其中基底脑过度兴奋导致阵发性超同步神经元放电。人类颞叶癫痫与下丘脑锥体细胞亚群中的氯化钾共转运蛋白KCC2的功能障碍或丧失有关,后者是产生癫痫活动的关键结构。 KCC2通过挤出两种离子来调节神经内氯和细胞外钾水平。由于中间神经元的活动,在反复激活GABA能突触的过程中,缺少有效的KCC2可能会改变氯和钾水平的动态。反过来,这种GABA能应激本身可能会影响Cl -调节。离子稳态的这种变化可能会在受影响的锥体细胞中将GABA能信号从抑制性转变为兴奋性,并且还会增加神经元的兴奋性。这些变化可能会导致锥体细胞的周期性爆发,而锥体细胞是发作性癫痫发作的重要组成部分。我们使用具有现实连通性的特殊网络的计算模型检验了该假设。锥体细胞模型明确纳入了共转运蛋白KCC2及其对内部/外部氯和钾水平的影响。我们的网络模型表明,关键数目的锥体细胞中KCC2的丢失增加了外部钾和细胞内氯化物的浓度,从而导致了癫痫样的场电位振荡。这些振荡包括瞬态放电,这些瞬态放电导致类似体外的频谱出现类似奇特的场事件。 KCC2功能的恢复抑制了癫痫发作的活动,因此可能是一种有用的治疗选择。因此,这些模拟结果表明,单独的KCC2协同转运蛋白活性降低可能是引起小脑放电的原因。>重要意义声明脑中的离子调节是神经兴奋性的主要决定因素。神经元中的细胞内氯化物是静息电位和抑制性逆转电位的部分决定因素,它通过钾离子氯化物共转运蛋白与细胞外钾一起被调节。在颞叶癫痫过程中,锥体细胞内细胞内氯的稳态调节受到损害,但尚未探讨这种失调如何导致癫痫发作。使用描述离子机制的现实神经网络模型,我们表明氯化物体内稳态病理学激发癫痫发作活动类似于癫痫脑组织的记录。我们表明癫痫发作需要病理细胞的关键百分比。我们的模型预测,锥体细胞中氯离子稳态的恢复可能是可行的抗癫痫策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号