首页> 外文会议>SPE Reservoir Simulation Conference >A Novel IPR Calculation Technique to Reduce Oscillations in Time-Lagged Network-Reservoir Coupled Modeling Using Analytical Scaling and Fast Marching Method
【24h】

A Novel IPR Calculation Technique to Reduce Oscillations in Time-Lagged Network-Reservoir Coupled Modeling Using Analytical Scaling and Fast Marching Method

机译:一种新的IPR计算技术,以利用分析缩放和快速行进方法减少时间滞后网络储层耦合建模的振荡

获取原文

摘要

Surface network and subsurface reservoir coupled modeling adds value to asset development assessments when gathering networks and processing units impose significant constraints on production and injection rates. However, it is often difficult and time-consuming to reduce or avoid oscillations in production forecasts that often occur when the surface network and reservoir model are coupled together time step lagged. We present a new technique for IPR calculations which significantly reduces or eliminates these oscillations and provides smoother more realistic production forecasts from time-lagged coupled modeling without significant user intervention. This technique has three steps. First, the conventional IPR curve is calculated by solving the well model in the reservoir simulator multiple times over a range of flow rates or bottom-hole pressures (BHP). Second, a dynamic "region of influence" (ROI) is generated for each well using the Fast Marching Method (FMM). Third, the average pressure in the ROI is used to analytically scale the conventional IPR curve. The analytical scaling process honors the well operating point in the reservoir model at the time of coupling, maintains its existing non-linear shape, and shifts the no-flow BHP of the conventional IPR curve to the average pressure in the ROI. The conventional IPR curve mentioned earlier only considers the cells in which the well is completed and assumes no change in pressure in these cells until the next coupling time step. As a result, it typically predicts well productivity indices (PI) that are too high so that the coupled model forecasts oscillatory production rates over time. Previous studies have identified this problem and proposed improvements by considering regions around wells for IPR calculations. These methods usually require advancing and winding back flow simulations in reservoir or sub-domain models multiple times between coupling time steps. This implementation requires access to reservoir simulation code and the run time cost can be high and in some cases prohibitive. In contrast, the new technique presented in this paper can be implemented independent from the reservoir simulation code and the run time cost is low. In addition, previous studies provide no clear guideline on how to define the region for a particular well and how the region should change over time. In this paper, we use FMM to define the ROI dynamically around wells, so that its extent depends on simulation time, the coupling time interval and reservoir heterogeneity. We believe the ROI obtained this way reasonably captures the region of the reservoir which most significantly influences well performance until the next coupling time step. Therefore, the average pressure in the ROI provides a good estimate of the no-flow BHP which is used as the basis to adjust the IPR curve. We demonstrate the application of this new technique in a field example.
机译:表面网络和地下储层耦合建模在收集网络和加工单位时增加了资产开发评估的价值对生产和注射率施加了重大限制。然而,在耦合在一起的时间步长时,通常难以迅速减少或避免经常发生的生产预测中的振荡。我们为知识产权计算提出了一种新技术,可显着降低或消除这些振荡,并提供更加现实的生产预测,从时滞的耦合建模中没有明显的用户干预。这种技术有三个步骤。首先,通过在一系列流速或底部孔压力(BHP)中多次求解储存器模拟器中的井模型来计算传统的IPR曲线。其次,使用快速行进方法(FMM)为每个孔产生动态“影响区域”(ROI)。第三,ROI中的平均压力用于分析传统的IPR曲线。分析缩放过程在耦合时函数储库模型中的井操作点,保持其现有的非线性形状,并将传统的IPR曲线的无流量BHP转换为ROI中的平均压力。前面提到的传统IPR曲线仅考虑井完成并假设这些细胞中的压力的​​变化没有变化,直到下一个耦合时间步长。结果,它通常预测太高的生产率指数(PI),使得耦合模型会随着时间的推移预测振荡的生产率。以前的研究已经确定了这个问题,并通过考虑井周围的地区进行IPR计算来改进。这些方法通常需要多次在耦合时间步骤之间多次推进和缠绕在储库或子域模型中的反向模拟。此实现需要访问库仿真代码,并且运行时间成本可能很高,在某些情况下禁止。相比之下,本文呈现的新技术可以独立于储库仿真代码实现,运行时间成本低。此外,之前的研究还没有关于如何为特定井定义该区域以及该区域如何随时间变化的明确指导。在本文中,我们使用FMM在井周围动态定义ROI,从而其程度取决于模拟时间,耦合时间间隔和储层异质性。我们相信以这种方式获得的ROI合理地捕获储层区域,该地区最显着影响井的性能,直到下一个耦合时间步长。因此,ROI中的平均压力提供了对使用作为调整IPR曲线的基础的无流动BHP的良好估计。我们展示了这种新技术在现场示例中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号