首页> 美国卫生研究院文献>The Journal of Neuroscience >Gap Junctions between Striatal Fast-Spiking Interneurons Regulate Spiking Activity and Synchronization as a Function of Cortical Activity
【2h】

Gap Junctions between Striatal Fast-Spiking Interneurons Regulate Spiking Activity and Synchronization as a Function of Cortical Activity

机译:纹状体快速加标中枢神经元之间的间隙连接调节加标活动和同步作为皮层活动的函数。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Striatal fast-spiking (FS) interneurons are interconnected by gap junctions into sparsely connected networks. As demonstrated for cortical FS interneurons, these gap junctions in the striatum may cause synchronized spiking, which would increase the influence that FS neurons have on spiking by the striatal medium spiny (MS) neurons. Dysfunction of the basal ganglia is characterized by changes in synchrony or periodicity, thus gap junctions between FS interneurons may modulate synchrony and thereby influence behavior such as reward learning and motor control. To explore the roles of gap junctions on activity and spike synchronization in a striatal FS population, we built a network model of FS interneurons. Each FS connects to 30–40% of its neighbors, as found experimentally, and each FS interneuron in the network is activated by simulated corticostriatal synaptic inputs. Our simulations show that the proportion of synchronous spikes in FS networks with gap junctions increases with increased conductance of the electrical synapse; however, the synchronization effects are moderate for experimentally estimated conductances. Instead, the main tendency is that the presence of gap junctions reduces the total number of spikes generated in response to synaptic inputs in the network. The reduction in spike firing is due to shunting through the gap junctions; which is minimized or absent when the neurons receive coincident inputs. Together these findings suggest that a population of electrically coupled FS interneurons may function collectively as input detectors that are especially sensitive to synchronized synaptic inputs received from the cortex.
机译:纹状体快速加标(FS)内部神经元通过间隙连接相互连接成稀疏连接的网络。如皮质FS中间神经元所证明的,纹状体中的这些间隙连接可能引起同步的尖峰,这将增加FS神经元对纹状体中棘(MS)神经元尖峰的影响。基底神经节的功能障碍以同步性或周期性变化为特征,因此FS内部神经元之间的间隙连接可调节同步性,从而影响诸如奖励学习和运动控制的行为。为了探索间隙连接在纹状体FS种群活动和峰值同步中的作用,我们建立了FS中间神经网络模型。实验发现,每个FS都与其邻居的30%至40%连接,并且网络中的每个FS中神经元均由模拟的皮质皮质突触输入激活。我们的仿真表明,具有间隙连接的FS网络中同步尖峰的比例随着电突触电导的增加而增加;但是,对于实验估计的电导,同步效应是中等的。相反,主要趋势是间隙连接的存在会减少响应网络中突触输入而生成的尖峰总数。尖峰发射的减少归因于通过间隙连接处的分流。当神经元接收到一致的输入时,这被最小化或不存在。这些发现共同表明,电耦合的FS中枢神经可能共同充当输入检测器,这些输入检测器对从皮质接收的同步突触输入特别敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号