首页> 美国卫生研究院文献>The Journal of Neuroscience >Spinal Interneurons Differentiate Sequentially from Those Driving the Fastest Swimming Movements in Larval Zebrafish to Those Driving the Slowest Ones
【2h】

Spinal Interneurons Differentiate Sequentially from Those Driving the Fastest Swimming Movements in Larval Zebrafish to Those Driving the Slowest Ones

机译:脊椎中枢神经从驱动幼虫斑马鱼中最快的游泳运动到驱动最慢的运动的那些依次区分。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Studies of neuronal networks have revealed few general principles that link patterns of development with later functional roles. While investigating the neural control of movements, we recently discovered a topographic map in the spinal cord of larval zebrafish that relates the position of motoneurons and interneurons to their order of recruitment during swimming. Here, we show that the map reflects an orderly pattern of differentiation of neurons driving different movements. First, we use high-speed filming to show that large-amplitude swimming movements with bending along much of the body appear first, with smaller, regional swimming movements emerging later. Next, using whole-cell patch recordings, we demonstrate that the excitatory circuits that drive large-amplitude, fast swimming movements at larval stages are present and functional early on in embryos. Finally, we systematically assess the orderly emergence of spinal circuits according to swimming speed using transgenic fish expressing the photoconvertible protein Kaede to track neuronal differentiation in vivo. We conclude that a simple principle governs the development of spinal networks in which the neurons driving the fastest, most powerful swimming in larvae develop first with ones that drive increasingly weaker and slower larval movements layered on over time. Because the neurons are arranged by time of differentiation in the spinal cord, the result is a topographic map that represents the speed/strength of movements at which neurons are recruited and the temporal emergence of networks. This pattern may represent a general feature of neuronal network development throughout the brain and spinal cord.
机译:对神经网络的研究表明,很少有将发展模式与以后的功能角色联系起来的一般原理。在研究运动的神经控制时,我们最近在幼虫斑马鱼的脊髓中发现了一个地形图,该图将运动神经元和中间神经元的位置与其在游泳期间的募集顺序相关联。在这里,我们表明该图反映了驱动不同运动的神经元分化的有序模式。首先,我们使用高速摄影来显示,随着人体大部分弯曲而出现的大幅度游泳运动首先出现,然后出现较小的区域性游泳运动。接下来,我们使用全细胞斑块记录,证明了在幼体阶段驱动大幅度快速游泳运动的兴奋性电路在胚胎中很早就开始发挥作用。最后,我们使用表达光可转换蛋白Kaede的转基因鱼根据泳速系统地评估脊髓回路的有序出现,以跟踪体内神经元分化。我们得出的结论是,一个简单的原则支配着脊髓网络的发展,在该网络中,驱动幼虫最快,最强大的游泳的神经元首先发育,而随着时间的推移,这些神经元会驱动越来越弱和较慢的幼虫运动。因为神经元是按照脊髓中分化的时间排列的,所以结果是一个地形图,代表了募集神经元的运动速度/强度和网络的暂时出现。这种模式可能代表整个大脑和脊髓神经网络发展的一般特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号