首页> 美国卫生研究院文献>The Journal of Neuroscience >Neural Correlates of Tactile Detection: A Combined Magnetoencephalography and Biophysically Based Computational Modeling Study
【2h】

Neural Correlates of Tactile Detection: A Combined Magnetoencephalography and Biophysically Based Computational Modeling Study

机译:触觉检测的神经相关性:结合脑磁图和基于生物物理的计算模型研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Previous reports conflict as to the role of primary somatosensory neocortex (SI) in tactile detection. We addressed this question in normal human subjects using whole-head magnetoencephalography (MEG) recording. We found that the evoked signal (0–175 ms) showed a prominent equivalent current dipole that localized to the anterior bank of the postcentral gyrus, area 3b of SI. The magnitude and timing of peaks in the SI waveform were stimulus amplitude dependent and predicted perception beginning at ∼70 ms after stimulus. To make a direct and principled connection between the SI waveform and underlying neural dynamics, we developed a biophysically realistic computational SI model that contained excitatory and inhibitory neurons in supragranular and infragranular layers. The SI evoked response was successfully reproduced from the intracellular currents in pyramidal neurons driven by a sequence of lamina-specific excitatory input, consisting of output from the granular layer (∼25 ms), exogenous input to the supragranular layers (∼70 ms), and a second wave of granular output (∼135 ms). The model also predicted that SI correlates of perception reflect stronger and shorter-latency supragranular and late granular drive during perceived trials. These findings strongly support the view that signatures of tactile detection are present in human SI and are mediated by local neural dynamics induced by lamina-specific synaptic drive. Furthermore, our model provides a biophysically realistic solution to the MEG signal and can predict the electrophysiological correlates of human perception.
机译:先前的报道对主要的体感新皮层(SI)在触觉检测中的作用存在冲突。我们通过使用全头磁脑电图(MEG)记录在正常人类受试者中解决了这个问题。我们发现,诱发信号(0-175毫秒)显示出一个显着的等效电流偶极子,该偶极子位于中央后回的前银行,SI的3b区域。 SI波形中峰值的大小和时序与刺激幅度有关,并且在刺激后约70毫秒开始预测知觉。为了在SI波形和潜在的神经动力学之间建立直接和原则上的联系,我们开发了一种生物物理上可行的计算SI模型,该模型包含位于颗粒上层和颗粒下层的兴奋性和抑制性神经元。 SI诱发的反应成功地由一系列特定于椎板的兴奋性输入(包括颗粒层的输出(约25 ms),外源性输入到颗粒上层(约70 ms))驱动的锥体神经元的细胞内电流复制而来,第二波颗粒输出(约135 ms)。该模型还预测,在感知试验期间,SI的感知相关性反映了较强的和较短的潜伏性上颗粒和晚期颗粒驱动。这些发现强烈支持这样的观点,即触觉检测的特征存在于人类SI中,并且是由层特异性突触驱动诱导的局部神经动力学介导的。此外,我们的模型为MEG信号提供了生物物理上可行的解决方案,并且可以预测人类感知的电生理相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号