首页> 美国卫生研究院文献>Biochemical Journal >Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase
【2h】

Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase

机译:大肠杆菌二氢叶酸还原酶催化过程中蛋白质运动和氢转移的耦合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The enzyme DHFR (dihydrofolate reductase) catalyses hydride transfer from NADPH to, and protonation of, dihydrofolate. The physical basis of the hydride transfer step catalysed by DHFR from Escherichia coli has been studied through the measurement of the temperature dependence of the reaction rates and the kinetic isotope effects. Single turnover experiments at pH 7.0 revealed a strong dependence of the reaction rates on temperature. The observed relatively large difference in the activation energies for hydrogen and deuterium transfer led to a temperature dependence of the primary kinetic isotope effects from 3.0±0.2 at 5 °C to 2.2±0.2 at 40 °C and an inverse ratio of the pre-exponential factors of 0.108±0.04. These results are consistent with theoretical models for hydrogen transfer that include contributions from quantum mechanical tunnelling coupled with protein motions that actively modulate the tunnelling distance. Previous work had suggested a coupling of a remote residue, Gly121, with the kinetic events at the active site. However, pre-steady-state experiments at pH 7.0 with the mutant G121V-DHFR, in which Gly121 was replaced with valine, revealed that the chemical mechanism of DHFR catalysis was robust to this replacement. The reduced catalytic efficiency of G121V-DHFR was mainly a consequence of the significantly reduced pre-exponential factors, indicating the requirement for significant molecular reorganization during G121V-DHFR catalysis. In contrast, steady-state measurements at pH 9.5, where hydride transfer is rate limiting, revealed temperature-independent kinetic isotope effects between 15 and 35 °C and a ratio of the pre-exponential factors above the semi-classical limit, suggesting a rigid active site configuration from which hydrogen tunnelling occurs. The mechanism by which hydrogen tunnelling in DHFR is coupled with the environment appears therefore to be sensitive to pH.
机译:DHFR(二氢叶酸还原酶)酶催化氢化物从NADPH转移至二氢叶酸并质子化。通过测量反应速率对温度的依赖性以及动力学同位素效应,研究了由DHFR催化的大肠杆菌氢化物转移步骤的物理基础。 pH值为7.0的单周转实验表明反应速率对温度的强烈依赖性。观察到的氢和氘转移活化能的相对较大差异导致主要动力学同位素效应的温度依赖性从5°C的3.0±0.2升高到40°C的2.2±0.2和预指数的反比系数为0.108±0.04。这些结果与氢转移的理论模型是一致的,该模型包括量子力学隧穿与主动调节隧穿距离的蛋白质运动结合的贡献。先前的研究表明,远端残基Gly 121 与活性位点的动力学事件有关。然而,用突变型G121V-DHFR(其中Gly 121 被缬氨酸替代)在pH 7.0进行的稳态试验表明,DHFR催化的化学机理对此替代作用很强。 G121V-DHFR催化效率降低的主要原因是显着降低的指数前因子,表明在G121V-DHFR催化过程中需要进行显着的分子重组。相比之下,在氢化物转移受到速率限制的pH值为9.5的稳态测量中,发现温度依赖性的动力学同位素效应在15至35°C之间,并且前指数因子的比率高于半经典限值,表明存在刚性发生氢隧穿的活性部位构型。因此,DHFR中的氢隧穿与环境耦合的机制似乎对pH敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号