首页> 美国卫生研究院文献>Bioengineering >Predicting the Biodegradation of Magnesium Alloy Implants: Modeling Parameter Identification and Validation
【2h】

Predicting the Biodegradation of Magnesium Alloy Implants: Modeling Parameter Identification and Validation

机译:预测镁合金植入物的生物降解:建模参数识别和验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnesium (Mg) and its alloys can degrade gradually up to complete dissolution in the physiological environment. This property makes these biomaterials appealing for different biomedical applications, such as bone implants. In order to qualify Mg and its alloys for bone implant applications, there is a need to precisely model their degradation (corrosion) behavior in the physiological environment. Therefore, the primary objective develop a model that can be used to predict the corrosion behavior of Mg-based alloys in vitro, while capturing the effect of pitting corrosion. To this end, a customized FORTRAN user material subroutine (or VUMAT) that is compatible with the finite element (FE) solver Abaqus/Explicit (Dassault Systèmes, Waltham, MA, USA) was developed. Using the developed subroutine, a continuum damage mechanism (CDM) FE model was developed to phenomenologically estimate the corrosion rate of a biocompatible Mg–Zn–Ca alloy. In addition, the mass loss immersion test was conducted to measure mass loss over time by submerging Mg–Zn–Ca coupons in a glass reactor filled with simulated body fluid (SBF) solution at pH 7.4 and 37 °C. Then, response surface methodology (RSM) was applied to calibrate the corrosion FE model parameters (i.e., Gamma (γ), Psi (ψ), Beta (β), and kinetic parameter (Ku)). The optimum values for γ, ψ, β and Ku were found to be 2.74898, 2.60477, 5.1, and 0.1005, respectively. Finally, given the good fit between FE predictions and experimental data, it was concluded that the numerical framework precisely captures the effect of corrosion on the mass loss over time.
机译:镁及其合金可以逐渐降解直至完全溶解在生理环境中。这种特性使这些生物材料吸引了不同的生物医学应用,例如骨植入物。为了使Mg及其合金适合骨骼植入应用,需要精确地模拟其在生理环境中的降解(腐蚀)行为。因此,主要目的是开发一种模型,该模型可用于预测镁基合金的体外腐蚀行为,同时捕获点蚀的影响。为此,开发了与有限元(FE)解算器Abaqus / Explicit(美国马萨诸塞州沃尔瑟姆市的DassaultSystèmes)兼容的定制FORTRAN用户材料子例程(或VUMAT)。使用已开发的子程序,开发了一种连续损伤机理(CDM)的有限元模型,从现象学上评估了生物相容性Mg-Zn-Ca合金的腐蚀速率。此外,通过将Mg-Zn-Ca试样浸入装有pH 7.4和37°C的模拟体液(SBF)溶液的玻璃反应器中,进行了质量损失浸没试验,以测量随时间的质量损失。然后,应用响应表面方法(RSM)来校准腐蚀FE模型参数(即,γ(γ),Psi(ψ),Beta(β)和动力学参数(Ku))。 γ,ψ,β和Ku的最佳值分别为2.74898、2.60477、5.1和0.1005。最后,鉴于有限元预测和实验数据之间的良好拟合,得出的结论是,数值框架精确地记录了腐蚀对质量损失的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号